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Motivation



When does LNS work?

Theorem (yesterday)

LNS is

• strongly successful iff G is a “sun graph”

• weakly successful iff G is not a “bush” or a “double bush”
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Can we improve LNS? – Strengthening Protocols

Depending on the graph, LNS can be strongly or weakly successful!

Can we make it better?

Informal Idea

Only make a call iff LNS allows it

and you know that it leads to a good situation.

But how do you know which calls are okay?
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Protocol-dependent knowledge



Syntax

The language of protocol-dependent knowledge:

φ ::= ⊤ | Ni i | Si i | Ci i | i = i | ¬φ | φ ∧ φ | KP
i φ | [π]φ

π ::= ?φ | ii | π;π | π ∪ π | π∗

Definition
A protocol is a function P mapping any agent pair ab to a formula Pab called the protocol
condition.

Example
The Learn New Secrets (LNS) protocol is LNSab := ¬Sab.
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Semantics

A state is a tuple (G , σ) where G = (A,N, S) is an initial graph and σ a call sequence.

Let Nσ and Sσ be the resulting relations after executing σ.

G , σ ⊨ Nx y :⇔ (x , y) ∈ Nσ

G , σ ⊨ Sx y :⇔ (x , y) ∈ Sσ

G , σ ⊨ Cx y :⇔ xy ∈ σ or yx ∈ σ

G , σ ⊨ x = y :⇔ x = y
G , σ ⊨ KP

a φ iff G , σ′ ⊨ φ for all (G , σ′) ∼P
a (G , σ)

G , σ ⊨ [π]φ iff G , σ′ ⊨ φ for all (G , σ′) ∈ JπK(G , σ)

J?φK(G , σ) := {(G , σ) | G , σ |= φ}
JabK(G , σ) := {(G , (σ; ab)) | G , σ |= Nab}

Jπ;π′K(G , σ) :=
⋃

{Jπ′K(G , σ′) | (G , σ′) ∈ JπK(G , σ)}
Jπ ∪ π′K(G , σ) := JπK(G , σ) ∪ Jπ′K(G , σ)

Jπ∗K(G , σ) :=
⋃

{JπnK(G , σ) | n ∈ N} 6



Epistemic Alternatives (standard)

The easy definition, without protocols:
Definition
For any agent a and protocol P let ∼a be the smallest relation such that:

• (G , ϵ) ∼a (G , ϵ);

• if (G , σ) ∼a (G , τ), Nσ
b = Nτ

b , Sσ
b = Sτ

b ,
then (G , σ; ab) ∼a (G , τ ; ab);
if (G , σ) ∼a (G , τ), Nσ

b = Nτ
b , Sσ

b = Sτ
b ,

then (G , σ; ba) ∼a (G , τ ; ba);

• if (G , σ) ∼a (G , τ) and a ̸∈ {c, d , e, f },
then (G , σ; cd) ∼a (G , τ ; ef ).

Note: We only do synchronous here.
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Protocol-dependent Epistemic Alternatives

The tricky definition, with protocols
Definition
For any agent a and protocol P let ∼P

a be the smallest relation such that:

• (G , ϵ) ∼P
a (G , ϵ);

• if (G , σ) ∼P
a (G , τ), Nσ

b = Nτ
b , Sσ

b = Sτ
b , and G , σ |= Pab and G , τ |= Pab,

then (G , σ; ab) ∼P
a (G , τ ; ab);

if (G , σ) ∼P
a (G , τ), Nσ

b = Nτ
b , Sσ

b = Sτ
b , and G , σ |= Pba and at G , τ |= Pab,

then (G , σ; ba) ∼P
a (G , τ ; ba);

• if (G , σ) ∼P
a (G , τ) and a ̸∈ {c, d , e, f } such that G , σ |= Pcd and G , τ |= Pef ,

then (G , σ; cd) ∼P
a (G , τ ; ef ).

Note: We only do synchronous here.
8



Common knowledge of a protocol prunes the execution tree!

GoMoChe> pdf $ treeUpTo 2 (wlog anyCall) (lineInit 3, [])

ABc.ABc.C ABC.ABc.ABC ABc.ABC.ABC

ABc.ABc.C

ab ac bc

ABC.ABC.BC Ab.BC.BC

Ab.BC.BC

ab bc

Ab.Bc.C

ab bc

GoMoChe> pdf $ treeUpTo 2 (wlog lns) (lineInit 3, [])

ABC.ABc.ABC ABc.ABC.ABC

ABc.ABc.C

ac bc

ABC.ABC.BC

Ab.BC.BC

ab

Ab.Bc.C

ab bc

9



Common knowledge of a protocol prunes the execution tree!

GoMoChe> pdf $ treeUpTo 2 (wlog anyCall) (lineInit 3, [])

ABc.ABc.C ABC.ABc.ABC ABc.ABC.ABC

ABc.ABc.C

ab ac bc

ABC.ABC.BC Ab.BC.BC

Ab.BC.BC

ab bc

Ab.Bc.C

ab bc

GoMoChe> pdf $ treeUpTo 2 (wlog lns) (lineInit 3, [])

ABC.ABc.ABC ABc.ABC.ABC

ABc.ABc.C

ac bc

ABC.ABC.BC

Ab.BC.BC

ab

Ab.Bc.C

ab bc

9



Avoiding Russel’s Protocol

Protocol( condition)s may not refer to themselves!

That is, we do not allow this:

Pab := . . .KP
a . . .
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What can our Language express?

After call ab, they know each others secret: [ab](Sab ∧ Sba)

Everyone knows all secrets: Ex :=
∧

i ,j Si j

After any of three calls, everyone knows all secrets: [ab ∪ bc ∪ ac]Ex

Learn-New-Secrets condition: LNSab := ¬Sab

LNS protocol:

LNS :=

 ⋃
a ̸=b∈A

(?(Nab ∧ ¬Sab); ab)

∗

; ?
∧

a ̸=b∈A
¬ (Nab ∧ ¬Sab)

LNS is strongly successful: [LNS]Ex

LNS is weakly successful: ⟨LNS⟩Ex
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Improving LNS with Epistemic Logic

LNSab := ¬Sab

Idea: Make call if LNS allows it, and you know that it leads to a good situation.

What is a good situation?

• LNS can still succeed: ⟨LNS⟩Ex

We define the hard strengthening of LNS by:

LNS■
ab := LNSab ∧ KLNS

a [ab]⟨LNS⟩Ex

Historic side note: This is actually why we found/invented KP in the first place, to avoid self-reference.

If you still worry about Russell here, see the main reference.
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Four different Syntactic Strengthenings

Given protocol: Pab

Hard
P■

ab := Pab ∧ KP
a [ab]⟨P⟩Ex

Soft
P♦

ab := Pab ∧ K̂P
a [ab]⟨P⟩Ex

Hard Step-wise
P□

ab := Pab ∧ KP
a [ab](Ex ∨

∨
i ,j

(Ni j ∧ Pij))

Soft Step-wise
P♢

ab := Pab ∧ K̂P
a [ab](Ex ∨

∨
i ,j

(Ni j ∧ Pij))
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Semantic Strengthening: Uniform Backward Induction

Instead of syntactically defining a strengthening, we can also work semantically on the tree or
set of call sequences directly!

One semantic strengthening is from Game and Decision Theory:

Definition: Uniform Backward Induction/Defoliation (“hard” version)

For any set of sequences X , let UBIP(X ) be X without σ; ab such that

• there is a σ′ ∈ X such that

• (G , σ′) ∼P
a (G , σ) and

• σ′; ab is terminal in X and

• (G , σ′; ab) ⊭ Ex .

This is also known as “common knowledge of stable belief in rationality” (Baltag, Smets, and
Zvesper 2009) or “common belief in future rationality” (Perea 2014).
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! = UBI

Theorem

Step-wise Strengthening is the same as Uniform Backward Induction:

P□(G) = UBIP(P(G))
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Good News



Example of Strongly Successful Strengthening

With LNS:

a b c

a b c a b c a b c

a b c a b c a b c a b c a b c

a b c a b c a b c

ab bc cb

ac bc cb ab ab

bc ac ac
a

a

a

a

✓ ✓ ✓

× ×
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Example of Strongly Successful Strengthening II

With hard strengthening of LNS:

a b c

a b c a b c a b c

a b c a b c a b c a b c a b c

a b c a b c a b c

ab bc cb

ac bc cb ab ab

bc ac ac
a

a

a

a

✓ ✓ ✓

× ×

X X

X X

Note: The strengthening "repairs" LNS for this example, but not in general!
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The Diamond Example I

0

1

2 3

All LNS-sequences up to the decision point:
20; 01 ×
20; 21 ×
20; 30; 01 ✓

20; 30; 21 ×
20; 30; 31 ✓

20; 31 ✓

21; 10 ×
21; 20 ×
21; 30 ✓

21; 31; 10 ✓

21; 31; 20 ×
21; 31; 30 ✓

30; 01 ×
30; 20; 01 ✓

30; 20; 21 ✓

30; 20; 31 ×
30; 21 ✓

30; 31 ×

31; 10 ×
31; 20 ✓

31; 21; 10 ✓

31; 21; 20 ✓

31; 21; 30 ×
31; 30 ×
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The Diamond Example II

0

1

2 3

Bonus exercise: but there is
another LNS strengthening
which is strongly successful
here!

Protocol successful unsuccessful

LNS 48 44
LNS■ 8 8
LNS■2 0 4
LNS■3 0 0
LNS♦ 48 8
LNS♦2 48 8
LNS♦3 48 8
LNS□ 24 36
LNS□2 8 16
LNS□3 8 4
LNS□4 0 4
LNS□5 0 0
LNS♢ 48 36
LNS♢2 48 32
LNS♢3 48 32
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Bad News



The Question

Is there a perfect strengthening of LNS?

Formally, is there a protocol which strengthens LNS to become strongly successful on all graphs
where the original LNS is weakly successful?

Hint: No.
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The Diamond with Hands aka Candy

(This example was found by Louwe Kuijer.)

0

1 2 3 4

5

Claim

LNS is weakly successful on this graph, but there is no epistemic symmetric protocol that is a
strengthening of LNS and that is strongly successful on this graph.
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Proof by Exhaustive Search

• LNS is weakly successful here:

• 02; 12; 53; 43; 13; 03; 23; 52; 42 is successful
• 02; 12; 53; 43; 13; 03; 52; 42 is unsuccessful

• There are 9468 LNS-sequences for the given graph.

• How to check all of them? Using GoMoChe, obviously ;-)

We use a combination of model checking and “manual” proof by case distinction . . .
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Proof Idea

Suppose there is a perfect strengthening of LNS on this graph.

0

1 2 3 4

5

What could be a successful sequence of calls allowed by that protocol?

• 0, 1, 4 and 5 do not have incoming arrows ⇒ they will never be called.

• If 1 calls 2 first, then 1 never becomes an expert, same for 4 and 3.

• Hence, w.l.o.g. the first call is 02
23



Proof Idea II

0

1 2 3 4

5

• After 02, can we continue with 12?

• First call could have been 03 which looks the same to agent 1.

• But 03; 12 is losing, since then 1 cannot become an expert

(We now use that the protocol is symmetric and epistemic.)

• If 03; 12 is not allowed, also 02; 12 must be forbidden.

⇒ we cannot continue with 12
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Proof Idea III

0

1 2 3 4

5

More formally, suppose our new protocol condition is Pab:

(G , 02) ∼1 (G , 03) implies that (G , 02) ⊨ P12 iff (G , 03) ⊨ P12

But we must have (G , 03) ⊭ P12 to make P strongly successful.

Now continue with a lot more case distinctions like this . . .
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An Impossibility Result

Theorem

There is no epistemic protocol which strengthens LNS to become strongly successful on all
graphs where the original LNS is weakly successful.

Note about generality: This theorem is not syntax/language dependent. It applies to all
(semantic) strengthenings of LNS, even those not in our language.
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So what happens if we do it anyway?

0

1 2 3 4

5

If we apply hard strengthening to this graph, only the first 02 call is allowed. Afterwards we
have an empty protocol.
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Strengthening in GoMoChe



Strengthening in GoMoChe I

GoMoChe> lns
(\(z,y) -> Neg (S z y))

GoMoChe> strengHard lns
(\(v,u) -> Conj

[ Neg (S v u)
, K v (\(z,y) -> Neg (S z y))

(Box (Call v u)
(Dia

(Seq [ Star (CupAg (\y -> CupAg (\z -> Cup
[ Seq [ Test (Neg (Same y z))

, Seq [Test (Conj [N y z,Neg (S y z)]),Call y z] ]
, Seq [ Test (Neg (Neg (Same y z)))

, Test Bot ] ])))
, Test (ForallAg (\y -> ForallAg (\z -> Disj

[ Same y z
, Disj [Neg (N y z),Neg (Neg (S y z)) ] ]))) ] )

(ForallAg (\y -> ForallAg (\z -> S y z)))) ) ] )
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Strengthening in GoMoChe II

type Strengthening = Protocol -> Protocol

strengHard, strengSoft, strengStepHard, strengStepSoft :: Strengthening
strengHard p (a,b) = Conj [p (a,b) , K a p $ Box (Call a b) (Dia (protoTerm p) allExperts)]
strengSoft p (a,b) = Conj [p (a,b) , HatK a p $ Box (Call a b) (Dia (protoTerm p) allExperts)]
strengStepHard p (a,b) = Conj [p (a,b) , K a p $ Box (Call a b) (Disj [allExperts, protoCanGoOn p])]
strengStepSoft p (a,b) = Conj [p (a,b) , HatK a p $ Box (Call a b) (Disj [allExperts, protoCanGoOn p])]

Another strengthening, relevant for tomorrow:
super :: Protocol -> Protocol
super proto (x, y) = Conj [ Neg (superExpert x cmo) , proto (x,y) ]

See src/Gossip/Strengthening.hs, in particular diamondProto and diamondProtoOld for
a protocol that is strongly successful on the diamond example
(and thus not a strengthening of LNS).

29
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Another strengthening, relevant for tomorrow:
super :: Protocol -> Protocol
super proto (x, y) = Conj [ Neg (superExpert x cmo) , proto (x,y) ]

See src/Gossip/Strengthening.hs, in particular diamondProto and diamondProtoOld for
a protocol that is strongly successful on the diamond example
(and thus not a strengthening of LNS).
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Diamond with Hands in GoMoChe

lemmaExample

0

1 2 3 4

5

GoMoChe> isWeaklySucc localLns lemmaExample
True

Hard strengthening of LNS is empty after 02 (this takes a while to compute!):
GoMoChe> tree (strengHard lns) (lemmaExample,[(0,2)]) == Node (lemmaExample,[(0,2)]) []
True
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Diamond with Hands in GoMoChe II

GoMoChe> showTreeUpToDecision (tree lns (lemmaExample, []))
023-12-2-3-34-235 I6

(0,2): 023-12-023-3-34-235 02-1-02-3-4-5
(0,3): � 186
(1,2): 023-0123-0123-3-34-235 02-012-012-3-4-5

(0,3): � 76
(1,3): � 76
(2,3): � 48
(4,3): � 96
(5,2): � 120
(5,3): 023-0123-0123-235-34-235 02-012-012-35-4-35

(0,3): � 18
(1,3): � 18
(2,3): � 24
(3,2): � 24
(4,3): 023-0123-0123-2345-2345-235 02-012-012-345-345-35

(0,3): � 14
(1,3): 023-012345-0123-012345-2345-235 02-012345-012-012345-345-35

(0,3): 012345-012345-0123-012345-2345-235 012345-012345-012-012345-345-35
(2,3): , 2
(4,2): , 1
(5,2): � 1

(2,3): , 6
(4,2): , 2
...
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The Logic of K P

The following ideas and results are from

• Wouter J. Smit: Axiomatising Protocol-Dependent Knowledge in Gossip

MSc thesis, Amsterdam 2024.

https://eprints.illc.uva.nl/id/eprint/2330/

and an upcoming DaLí 2025 paper based on this thesis.
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Expressivity

If we allow arbitrary protocols P (including non-symmetric and non-epistemic), then KP can
express:

• that some call happened: K⊥
i ⊥

• that at least this many calls happened (“counting formulas”)

• that a specific call sequence happened

• . . .

Hence KP
i is much more expressive than Ki .

(And it motivates a different notion of bisimulation.)
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Axiomatization of K P

Question: What is the logic of the KP
i modality?

• How does it compare to K in standard epistemic logic?

• It is S5, but only until a protocol is violated.

• It interacts with the [ab] call modality.

But what other principles / axioms do we need for completeness?
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Model Classes

Which class of gossip models do we actually want to axiomatize?

• G — all gossip models
• I — all initial models
• R — the root model
• T — the tree model (including all its states)

G I R

T
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Static Axioms

The following system is sound and complete for the call-free language on the root model R.

Prop propositional tautologies K KP
a (φ → ψ) → (KP

a φ → KP
a ψ)

MP ⊢ φ,⊢ φ → ψ imply ⊢ ψ T KP
a φ → φ

Sub ⊢ φ ↔ ψ implies ⊢ χ ↔ χ[φ/ψ] 4 KP
a φ → KP

a KP
a φ

Own Saa 5 ¬KP
a φ → KP

a ¬KP
a φ

Only Oaa Nec ⊢ φ implies ⊢ KP
a φ

PFi Sab → KP
a Sab

NPi ¬Sab → KP
a ¬Sab PI KPφ → KQφ

Leaving out Only gets us a system complete for I, the class of all initial models.
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Call Reductions

To axiomatize the language with calls we use the following reduction axioms, valid on I.

Call Basics Call Effects

Con [ab](φ ∧ ψ) ↔ ([ab]φ ∧ [ab]ψ) Eff [ab]Scd ↔ (Sad ∨ Sbd) c ∈ {a, b}
Fnc [ab]¬φ ↔ ¬[ab]φ Ext [ab]Scd ↔ Scd c /∈ {a, b}

Calls and Protocol-Dependent Knowledge

Obs1 [ab]KP
a φ ↔ (Pab →

∨
R⊆S(ObR ∧ KP

a (Pab → (ObR → [ab]φ)))) a ∈ {a, b}
Obs2 [ab]KP

b φ ↔ (Pab →
∨

R⊆S(OaR ∧ KP
b (Pab → (OaR → [ab]φ)))) b ∈ {a, b}

Pri [ab]KP
c φ ↔ (Pab →

∧
d ,e ̸=a KP

c (Pde → [de]φ)) c /∈ {a, b}
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Putting it all together

In standard PAL and DEL axiomatizations we just combine static and dynamic axioms.

BUT here we cannot do this: the axiom T (KP
i φ → φ) is only valid at initial states.

Example: if σ ⊭ Pab then σ.ab ⊨ KP
i ⊥ but still σ.ab ⊭ ⊥.

Instead, we decide validity of φ for G (or T ) as follows:

• Prove that we only need to consider sequences σ up to a certain finite length.

• Rewrite all formulas [σ]φ to call-free equivalents with the reduction axioms.

• Check whether all those formulas are provable in Isystem (or Rsystem).

See Smit (2024) for details.
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Summary



Summary

• We can strengthen gossip protocols using epistemic logic.
• There is no “perfect” strengthening of LNS.
• All four logic(s) of KP are decidable.

Open Questions

• How good are step-wise strengthenings? (They are easier to compute.)

• Is there an incomparable but “LNS-like” protocol that beats LNS on many/most/all graphs?

• Is there a complete axiomatization of proto-dep Knowledge? (General, not just gossip?)

• When are self-referential strengthenings well-defined?

P∗
ab := Pab ∧ KP∗

a [ab]⟨P⟩Ex

P∗
ab := Pab ∧ KP∗

a [ab]⟨P∗⟩Ex
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