Lecture 2, part 3: GoMoChe
Knowledge and Gossip — ESSLLI 2025

Malvin Gattinger (ILLC, Amsterdam)
2025-07-28, Bochum

https://malv.in /2025 /esslli-gossip/

https://malv.in/2025/esslli-gossip/

Preface: How to get and run GoMoChe

Option A:

= GitHub account required! (<

= Open https://github.com/m4lvin/GoMoChe, click on the GitPod link, log in and wait.
Option B:

» Haskell and stack required! le,0

= Do this:

git clone https://github.com/m4lvin/GoMoChe.git
cd GoMoChe
stack ghci

https://github.com/m4lvin/GoMoChe
https://haskellstack.org/

Motivation

Theory

Implementation

Execution Trees

Examples

Motivation

Gomoche

Paulo Grobel: L'Ermitage de Gomoche

https://www.paulogrobel.com/crystal-mountain/

= After the call sequence ab; bc; ac, does agent a know that agent b knows the secret of
agent c?

= After the call sequence ab; bc; ac, does agent a know that agent b knows the secret of
agent c?

= |s the call sequence ab; cd; ac; bd successful, i.e. do all agents know all secrets afterwards?

Moreover, is it super successful, i.e. do all agents know that all agents know all secrets?

= After the call sequence ab; bc; ac, does agent a know that agent b knows the secret of
agent c?

= |s the call sequence ab; cd; ac; bd successful, i.e. do all agents know all secrets afterwards?
Moreover, is it super successful, i.e. do all agents know that all agents know all secrets?

= Given the gossip graph below, how many LNS sequences are (un)successful?

O <«--o
Q «--0

= After the call sequence ab; bc; ac, does agent a know that agent b knows the secret of
agent c?

= |s the call sequence ab; cd; ac; bd successful, i.e. do all agents know all secrets afterwards?

Moreover, is it super successful, i.e. do all agents know that all agents know all secrets?

= Given the gossip graph below, how many LNS sequences are (un)successful?

O <«--o
Q «--0

= After the sequence ab; bc; cd; bd, does agent a know that if they call agent b then b will
tell a the secret d?

= After the call sequence ab; bc; ac, does agent a know that agent b knows the secret of
agent c?

= |s the call sequence ab; cd; ac; bd successful, i.e. do all agents know all secrets afterwards?

Moreover, is it super successful, i.e. do all agents know that all agents know all secrets?

= Given the gossip graph below, how many LNS sequences are (un)successful?

O <«--o
Q «--0

= After the sequence ab; bc; cd; bd, does agent a know that if they call agent b then b will
tell a the secret d?

(D

@

Model Checking

Given a model M and a formula ¢, do we have M F ¢ or not?

Model Checking

Given a model M and a formula ¢, do we have M F ¢ or not?

In our case:

Given an initial gossip graph G and a call sequence o, do we have G,o F ¢ or not?

Model Checking

Given a model M and a formula ¢, do we have M F ¢ or not?

In our case:
Given an initial gossip graph G and a call sequence o, do we have G,o F ¢ or not?
And ¢ will be something that says:

= “x knows the secret of y"

“Everyone is an expert.”

“The protocol XYZ does not allow any more calls.”

= etc.

Theory

The language we use:
pu=T|Ni|Si|Gili=i|-e|lere| K e|[rle

mu=2p|ii|mm|rUT | 7"

The language we use:
pu=T|Ni | Sii | Gili=i|-pleAe| K o|[rle
mu=2p|ii|mm|rUT | 7"
Definition

A protocol is a function P mapping any agent pair ab to a formula P, called the protocol
condition.

The language we use:
pu=T|Ni|Si|Gili=il=p|one| K o|[rlp

mu=2p|ii|mm|rUT | 7"

Definition
A protocol is a function P mapping any agent pair ab to a formula P, called the protocol

condition.

Example
The Learn New Secrets (LNS) protocol is LNS,p := —S,b.

Semantics

A state is a tuple (G, o) where G = (A, N, S) is an initial graph and o a call sequence.

Let N and 57 be the resulting relations after executing o.

Semantics

A state is a tuple (G, o) where G = (A, N, S) is an initial graph and o a call sequence.

Let N and 57 be the resulting relations after executing o.

G,oE Ny & (x,y)eN°

G,o0E Sy & (x,y)es’

G,oF Cy & XYy EoTOrYXEO

GoEx=y & x=y

G,oEKPp iff G,o'Fpforall (G o) ~F (G, o)
G,oE|[r]e iff G,o'Fpforall (G,d') € [r](G,0o)

Semantics

A state is a tuple (G, o) where G = (A, N, S) is an initial graph and o a call sequence.

Let N and 57 be the resulting relations after executing o.

G,0 F Ny
G,0 F Sy
G,o0E Cyy
G,oEx=y

FHL LD

(x,y) e N7

(x,y) € S°

Xy € ooryx €o

X=Yy

G,0' E o forall (G,o') ~P (G, o)
G,0' E ¢ for all (G,d’) € [7](G, o)

{(G,0)[G,0 =}

{(G,(0:ab)) | G,0 |= Nab}

WI~'1(G,0") | (G,0") € [7](G, o)}

[71(G,0) U [x'](G, o)

U{l="1(G,0) | n € N} 8

Protocol-dependent Epistemic Alternatives

Definition
For any agent a and protocol P let ~F be the smallest relation such that:
= (G.,¢) N"aj (G.e);

= if (G,0) ~F (G,7), N =N}, S§ = S], and G,0 |= P,y and G, T |= P.p,
then (G, o; ab) ~F (G, ; ab);
if (G,0) ~P (G,7), N = N, Sg = S], and G,0 |= Py, and at G, 7 = Pap,
then (G, o; ba) ~F (G, T; ba);

» if (G,0) ~F (G,7)and a¢ {c,d, e, f} such that G,0 |= Py and G, T = Pey,
then (G, o; cd) ~F (G, 1; ef).

Protocol-dependent Epistemic Alternatives

Definition
For any agent a and protocol P let ~F be the smallest relation such that:
= (G.,¢) N"aj (G.e);

= if (G,0) ~F (G,7), N =N}, S§ = S], and G,0 |= P,y and G, T |= P.p,
then (G, o; ab) ~F (G, ; ab);
if (G,0) ~P (G,7), N = N, Sg = S], and G,0 |= Py, and at G, 7 = Pap,
then (G, o; ba) ~F (G, T; ba);

» if (G,0) ~F (G,7)and a¢ {c,d, e, f} such that G,0 |= Py and G, T = Pey,
then (G, o; cd) ~F (G, 1; ef).

Note: This is !

Avoiding Russel’s Protocol

Protocol(condition)s may not refer to themselves!

That is, we do not allow this:

(see exercise)

10

Implementation

Learning Haskell in one slide

A function £ with the type a -> b:

f ::a->b

fx=x+x

11

Learning Haskell in one slide

A function £ with the type a -> b:
f::a->b

fx=x+x

Note: no parentheses for function application!

GHCI> f 10 + 3

23

GHCI> map f [1,2,3]
[2,4,6]

11

Learning Haskell in one slide

A function £ with the type a -> b:

f ::a->b

fx=x+x
Note: no parentheses for function application!

GHCI> f 10 + 3

23
GHCI> map f [1,2,3]
[2,4,6]

A definition of Boolean Formulas and tuples thereof:

data BForm = Atom Int | Not BForm | And BForm BForm | Or BForm BForm

type MyPair = (BForm, BForm) "

Syntax in Haskell

data Form

= N Agent Agent
S Agent Agent
C Agent Agent
Same Agent Agent
Top
Neg Form
Conj [Form]

[

|

|

|

[

|

| Disj [Form]
| K Agent Protocol Form

| HatK Agent Protocol Form
| Box Prog Form

| Dia Prog Form

| ForallAg FormWithAgentVar
[

ExistsAg FormWithAgentVar

12

Syntax in Haskell

data Form

N Agent Agent

S Agent Agent

C Agent Agent

Same Agent Agent

Top

Neg Form

Conj [Form]

Disj [Form]

K Agent Protocol Form
HatK Agent Protocol Form
Box Prog Form

Dia Prog Form

ForallAg FormWithAgentVar
ExistsAg FormWithAgentVar

data Prog

Test Form

Call Agent Agent

Seq [Prog]

Cup [Prog]

CupAg ProgWithAgentVar
Star Prog

12

Graphs in Haskell

type Agent = Int
type Relation = IntMap IntSet
type Graph = (Relation, Relation)

type Call = (Agent,Agent)
type Sequence = [Call]

type State = (Graph,Sequence)

13

Making Graphs

GoMoChe> totallnit 3
(fromList [(O0,fromList [0,1,2]),(1,fromList [0,1,2]),(2,fromList [0,1,2])]
,fromList [(O0,fromList [0]),(1,fromList [1]),(2,fromList [2])])

14

Making Graphs

GoMoChe> totallnit 3
(fromList [(O0,fromList [0,1,2]),(1,fromList [0,1,2]),(2,fromList [0,1,2])]
,fromList [(O0,fromList [0]),(1,fromList [1]),(2,fromList [2])])

GoMoChe> ppGraphShort (totallnit 3)
"Abc.aBc.abC"

GoMoChe> ppGraphShort (totallnit 4)
"Abcd.aBcd.abCd.abcD"

14

Making Graphs

GoMoChe> totallnit 3
(fromList [(O0,fromList [0,1,2]),(1,fromList [0,1,2]),(2,fromList [0,1,2])]
,fromList [(O0,fromList [0]),(1,fromList [1]),(2,fromList [2])])

GoMoChe> ppGraphShort (totallnit 3)
"Abc.aBc.abC"

GoMoChe> ppGraphShort (totallnit 4)
"Abcd.aBcd.abCd.abcD"

More generally:

GoMoChe> :t parseGraph
parseGraph :: String -> Graph
GoMoChe> ppGraphShort (parseGraph "01-12-231-3 I4")

"Ab.Bc.bCd.D" ”

Semantics in Haskell

The following main model checking function implements F.

eval :: State -> Form -> Bool
eval state (N a b)
eval state (S a b)

b “IntSet.member” (fst (uncurry calls state) “at™ a)

b “IntSet.member” (snd (uncurry calls state) “at” a)

eval state (C a b) = (a,b) “elem” snd state
eval _ (Same a b) =a==>

eval _ Top = True

eval state (Neg f) = not $ eval state f
eval state (Conj fs) = all (eval state) fs
eval state (Disj fs) = any (eval state) fs

eval state (K a p f) =all (Ceval® f) (epistAlt a p state)

eval state (HatK a p f) = any (Teval® f) (epistAlt a p state)

eval state (Box p f) = all (Teval® f) (Set.tolList $ runs state p)

eval state (Dia p f) = any (Teval® f) (Set.tolList $ runs state p)

eval state (ForallAg f) = all (eval state . f) (agentsOf $ fst state)

eval state (ExistsAg f) = any (eval state . f) (agentsOf $ fst state) 15

Easy Example

We also define |= as an infix alias of eval looking more like .

GoMoChe> (totalInit 4, []) I= S 11

True

GoMoChe> (totallInit 4, []) |= S 12
False

GoMoChe> (totalInit 4, [(1,2)]) |= S 1 2

True

16

Epistemic equivalences in Haskell

epistAlt :: Agent -> Protocol -> State -> [State]

epistAlt

epistAlt a proto (g, history)

(g, O) =[(g, [1)] —- initial graph is common knowledge!

let (prev, lastevent) = (init history, last history)
lastcall@(x,y) = lastevent

in sort $

if a “isin” lastevent

then [

else [

(g',althist ++ [lastcalll) -- alternative histories and same last call
(g',althist) <- epistAlt a proto (g,prev)

eval (g',prev) (proto lastcall)

eval (g',althist) (proto lastcall)

localSameFor x (calls g' althist) (calls g prev) -- inspect-then-merge!
localSameFor y (calls g' althist) (calls g prev)]
(g',cs'++[altevent]) -- alternative histories and alternative last calls

(g',cs') <- epistAlt a proto (g,prev)
altevent <- allowedCalls proto (g',cs')
not $ a “isin” altevent]

17

Epistemic equivalences in Haskell

epistAlt :: Agent -> Protocol -> State -> [State]

epistAlt

epistAlt a proto (g, history)

(g, O) =[(g, [1)] —- initial graph is common knowledge!

let (prev, lastevent) = (init history, last history)
lastcall@(x,y) = lastevent

in sort $

if a “isin” lastevent

then [

else [

(g',althist ++ [lastcalll) -- alternative histories and same last call
(g',althist) <- epistAlt a proto (g,prev)

eval (g',prev) (proto lastcall)

eval (g',althist) (proto lastcall)

localSameFor x (calls g' althist) (calls g prev) -- inspect-then-merge!
localSameFor y (calls g' althist) (calls g prev)]
(g',cs'++[altevent]) -- alternative histories and alternative last calls

(g',cs') <- epistAlt a proto (g,prev)
altevent <- allowedCalls proto (g',cs')
not $ a “isin” altevent]

The above implements the synchronous ~; as above. See the async branch if you are curious!

17

List of useful functions

Making and showing graphs: totallInit, parseGraph, ppGraph
Use total graph and parse sequence: after
Formula abbreviations: con, dis, expert, allExperts, superExperts

Predefined protocols: anyCall, lns, cmo, pig

18

List of useful functions

Making and showing graphs: totallInit, parseGraph, ppGraph
Use total graph and parse sequence: after
Formula abbreviations: con, dis, expert, allExperts, superExperts

Predefined protocols: anyCall, lns, cmo, pig

Hakell hints:
= Use TAB completion in the terminal!
= Use :t whatever to see the type of things.

= Get more information about things with :i whatever

18

Life should be easy

Additional convenience functions

isSuperSuccSequence :: Protocol -> State -> Sequence -> Bool
isSuperSuccSequence proto (g,sigma) cs =

(g, sigma ++ cs) |= ForallAg (" superExpert” proto)

19

Life should be easy

Additional convenience functions

isSuperSuccSequence :: Protocol -> State -> Sequence -> Bool
isSuperSuccSequence proto (g,sigma) cs =

(g, sigma ++ cs) |= ForallAg (" superExpert” proto)

statistics :: Protocol -> State -> (Int,Int)
statistics proto (g,sigma) =
(length succSequ, length sequ - length succSequ) where
sequ = sequences proto (g,sigma) \\ [[1]

succSequ = filter (isSuccSequence (g,sigma)) sequ

19

Execution Trees

Running Example

nExample

20

Execution Trees in GoMoChe

GoMoChe> :i tree

tree :: Protocol -> State -> ExecutionTree

21

Execution Trees in GoMoChe

GoMoChe> :i tree

tree :: Protocol -> State -> ExecutionTree

GoMoChe> tree lns (nExample, [])

0-1-02-013 I4

(2,0): 02-1-02-013 02-1-02-3

(2,0)(3,0): 0123-1-02-0123 023-1-02-023

(2,0)(3,0)(0,1): 0123-0123-02-0123 0123-0123-02-023
(2,0)(3,0)(0,1)(3,1): 0123-0123-02-0123 0123-0123-02-0123
(2,0)(3,0)(3,1): 0123-0123-02-0123 023-0123-02-0123
(2,0)(3,0)(3,1)(0,1): 0123-0123-02-0123 0123-0123-02-0123
(2,0)(3,1): 02-013-02-013 02-13-02-13

21

Show me the tree!

Using the wonderful GraphViz library (https://graphviz.org/) we can also actually draw the tree.
pdf $ tree 1lns (nExample, [1)

(Not fitting on slide; run it yourself and zoom in to actually see something the resulting picture!)

22

https://graphviz.org/

Execution Trees with epistemic edges

We can further annotate the tree with indistinguishability relation(s).

GoMoChe> :i pdfTreeWith
pdfTreeWith :: [Agent] -> Int -> Int -> Protocol -> ExecutionTree -> I0 ()

(The first Int limits the depths of the tree, the second controls the arrangement of nodes.)

23

Execution Trees with epistemic edges

We can further annotate the tree with indistinguishability relation(s).

GoMoChe> :i pdfTreeWith
pdfTreeWith :: [Agent] -> Int -> Int -> Protocol -> ExecutionTree -> I0 ()

(The first Int limits the depths of the tree, the second controls the arrangement of nodes.)

GoMoChe> pdfTreeWith [2] 2 1 lns (tree 1lns (nExample,[]))

23

Execution Trees with epistemic edges

We can further annotate the tree with indistinguishability relation(s).

GoMoChe> :i pdfTreeWith
pdfTreeWith :: [Agent] -> Int -> Int -> Protocol -> ExecutionTree -> I0 ()

(The first Int limits the depths of the tree, the second controls the arrangement of nodes.)

GoMoChe> pdfTreeWith [2] 2 1 lns (tree 1lns (nExample,[]))

23

Cheap optimization tricks for search problems

= W.lo.g. fix the first call to be ab.

24

Cheap optimization tricks for search problems

= W.lo.g. fix the first call to be ab.

= Fix the first two calls to be either ab; bc or to be ab; cd.

Wait, why is this w.l.o.g.? (*=F

24

Examples

Answering “Motivation” question 1

= After the call sequence ab; bc; ac, does agent a know that agent b knows the secret of
agent c?

23

Answering “Motivation” question 1

= After the call sequence ab; bc; ac, does agent a know that agent b knows the secret of
agent c?

GoMoChe> after "ab;bc;ac" |= Kn a anyCall (S b c)

True

23

Answering “Motivation” question 2

= |s the call sequence ab; cd; ac; bd successful, i.e. do all agents know all secrets afterwards?
Moreover, is it super successful, i.e. do all agents know that all agents know all secrets?

26

Answering “Motivation” question 2

= |s the call sequence ab; cd; ac; bd successful, i.e. do all agents know all secrets afterwards?
Moreover, is it super successful, i.e. do all agents know that all agents know all secrets?

GoMoChe> after "abj;cd;ac;bd" |= allExperts

True

GoMoChe> after "ab;cd;ac;bd" |= allSuperExperts lns
False

26

Answering “Motivation” question 3

= Given the gossip graph below, how many LNS sequences are (un)successful?

T -
Q <«--0

27

Answering “Motivation” question 3

= Given the gossip graph below, how many LNS sequences are (un)successful?

T -
Q <«--0

GoMoChe> statistics 1lns (parseGraph "01-12-231-3 I4",[])

(67,20)

27

Answering “Motivation” question 4

= After the sequence ab; bc; cd; bd, does agent a know that if they call agent b then b will
tell a the secret d? That is, do we have ab; bc; cd; bd E K,[ab]S,d or not?

28

Answering “Motivation” question 4

= After the sequence ab; bc; cd; bd, does agent a know that if they call agent b then b will
tell a the secret d? That is, do we have ab; bc; cd; bd E K,[ab]S,d or not?

GoMoChe> after "ab;bc;cd;bd" |= K a anyCall (Box (Call a b) (S a d))
False

GoMoChe> after "ab;bc;cd;bd" |= K a 1ns (Box (Call a b) (S a d))
True

28

Answering “Motivation” question 4

= After the sequence ab; bc; cd; bd, does agent a know that if they call agent b then b will
tell a the secret d? That is, do we have ab; bc; cd; bd E K,[ab]S,d or not?

GoMoChe> after "ab;bc;cd;bd" |= K a anyCall (Box (Call a b) (S a d))
False

GoMoChe> after "ab;bc;cd;bd" |= K a 1ns (Box (Call a b) (S a d))
True

Answer: it depends!

We have ab; bc; cd; bd ¥ KANY[ab]S.d but ab; be; cd; bd E KENS[ab]S,d.

28

Complex Example: Knowledge Overviews

knowledgeOverview :: State -> Protocol -> IO ()

This generates tables such as these:

GoMoChe> knowledgeOverview (totalInit 4, parseSequence "ab;bc;cd;da;ab") anyCall

a b G d
ab ab ab C d
bc ab abc abc d
cd ab abc abcd CD abcd CD
da abcd A D abc abcd CD abcd A CD

ab abcd ABCD abcd AB abcd CD abcd A CD

29

Complex Example: Knowledge Overviews

knowledgeOverview :: State -> Protocol -> IO ()

This generates tables such as these:

GoMoChe> knowledgeOverview (totalInit 4, parseSequence "ab;bc;cd;da;ab") anyCall

a b G d
ab ab ab C d
bc ab abc abc d
cd ab abc abcd CD abcd CD
da abcd A D abc abcd CD abcd A CD

ab abcd ABCD abcd AB abcd CD abcd A CD

GoMoChe> knowledgeOverview (totallnit 4, parseSequence "ab;bc;cd;da;ab") lns

a b C] d
ab ab ab G d
bc ab abc abc d
cd ab abc abcd CD abcd CD
da abcd _ __ abc abcd CD abcd _ __
ab abcd abcd abcd ABCD abcd

29

References, Links, Exercises

= GoMoChe: Gossip Model Checking, extended abstract LAMAS&SR 2022, Rennes.
https://malv.in/2022/LAMASSR-GoMoChe.pdf

= Appendix C of Everyone knows that everyone knows: gossip protocols for super experts.
https://arxiv.org/pdf/2011.13203.pdf #page=37

= Further examples: test/results.hs, (run them with stack test).

30

https://malv.in/2022/LAMASSR-GoMoChe.pdf
https://arxiv.org/pdf/2011.13203.pdf#page=37
https://github.com/m4lvin/GoMoChe/blob/main/test/results.hs

	Motivation
	Theory
	Implementation
	Execution Trees
	Examples

