
Lecture 2, part 3: GoMoChe
Knowledge and Gossip — ESSLLI 2025

Malvin Gattinger (ILLC, Amsterdam)
2025-07-28, Bochum

https://malv.in/2025/esslli-gossip/

1

https://malv.in/2025/esslli-gossip/

Preface: How to get and run GoMoChe

Option A:

• GitHub account required!

• Open https://github.com/m4lvin/GoMoChe, click on the GitPod link, log in and wait.

Option B:

• Haskell and stack required!

• Do this:

git clone https://github.com/m4lvin/GoMoChe.git
cd GoMoChe
stack ghci

2

https://github.com/m4lvin/GoMoChe
https://haskellstack.org/

Motivation

Theory

Implementation

Execution Trees

Examples

3

Motivation

Gomoche

Paulo Grobel: L’Ermitage de Gomoche 4

https://www.paulogrobel.com/crystal-mountain/

Motivation

• After the call sequence ab; bc; ac, does agent a know that agent b knows the secret of
agent c?

• Is the call sequence ab; cd ; ac ; bd successful, i.e. do all agents know all secrets afterwards?
Moreover, is it super successful, i.e. do all agents know that all agents know all secrets?

• Given the gossip graph below, how many LNS sequences are (un)successful?

a

b

c

d

• After the sequence ab; bc; cd ; bd , does agent a know that if they call agent b then b will
tell a the secret d?

5

Motivation

• After the call sequence ab; bc; ac, does agent a know that agent b knows the secret of
agent c?

• Is the call sequence ab; cd ; ac ; bd successful, i.e. do all agents know all secrets afterwards?
Moreover, is it super successful, i.e. do all agents know that all agents know all secrets?

• Given the gossip graph below, how many LNS sequences are (un)successful?

a

b

c

d

• After the sequence ab; bc; cd ; bd , does agent a know that if they call agent b then b will
tell a the secret d?

5

Motivation

• After the call sequence ab; bc; ac, does agent a know that agent b knows the secret of
agent c?

• Is the call sequence ab; cd ; ac ; bd successful, i.e. do all agents know all secrets afterwards?
Moreover, is it super successful, i.e. do all agents know that all agents know all secrets?

• Given the gossip graph below, how many LNS sequences are (un)successful?

a

b

c

d

• After the sequence ab; bc; cd ; bd , does agent a know that if they call agent b then b will
tell a the secret d?

5

Motivation

• After the call sequence ab; bc; ac, does agent a know that agent b knows the secret of
agent c?

• Is the call sequence ab; cd ; ac ; bd successful, i.e. do all agents know all secrets afterwards?
Moreover, is it super successful, i.e. do all agents know that all agents know all secrets?

• Given the gossip graph below, how many LNS sequences are (un)successful?

a

b

c

d

• After the sequence ab; bc; cd ; bd , does agent a know that if they call agent b then b will
tell a the secret d?

5

Motivation

• After the call sequence ab; bc; ac, does agent a know that agent b knows the secret of
agent c?

• Is the call sequence ab; cd ; ac ; bd successful, i.e. do all agents know all secrets afterwards?
Moreover, is it super successful, i.e. do all agents know that all agents know all secrets?

• Given the gossip graph below, how many LNS sequences are (un)successful?

a

b

c

d

• After the sequence ab; bc; cd ; bd , does agent a know that if they call agent b then b will
tell a the secret d?

5

Model Checking

Given a model M and a formula φ, do we have M ⊨ φ or not?

In our case:

Given an initial gossip graph G and a call sequence σ, do we have G , σ ⊨ φ or not?

And φ will be something that says:

• “x knows the secret of y”

• “Everyone is an expert.”

• “The protocol XYZ does not allow any more calls.”

• etc.

6

Model Checking

Given a model M and a formula φ, do we have M ⊨ φ or not?

In our case:

Given an initial gossip graph G and a call sequence σ, do we have G , σ ⊨ φ or not?

And φ will be something that says:

• “x knows the secret of y”

• “Everyone is an expert.”

• “The protocol XYZ does not allow any more calls.”

• etc.

6

Model Checking

Given a model M and a formula φ, do we have M ⊨ φ or not?

In our case:

Given an initial gossip graph G and a call sequence σ, do we have G , σ ⊨ φ or not?

And φ will be something that says:

• “x knows the secret of y”

• “Everyone is an expert.”

• “The protocol XYZ does not allow any more calls.”

• etc.

6

Theory

Syntax

The language we use:

φ ::= ⊤ | Ni i | Si i | Ci i | i = i | ¬φ | φ ∧ φ | KP
i φ | [π]φ

π ::= ?φ | ii | π; π | π ∪ π | π∗

Definition
A protocol is a function P mapping any agent pair ab to a formula Pab called the protocol
condition.

Example
The Learn New Secrets (LNS) protocol is LNSab := ¬Sab.

7

Syntax

The language we use:

φ ::= ⊤ | Ni i | Si i | Ci i | i = i | ¬φ | φ ∧ φ | KP
i φ | [π]φ

π ::= ?φ | ii | π; π | π ∪ π | π∗

Definition
A protocol is a function P mapping any agent pair ab to a formula Pab called the protocol
condition.

Example
The Learn New Secrets (LNS) protocol is LNSab := ¬Sab.

7

Syntax

The language we use:

φ ::= ⊤ | Ni i | Si i | Ci i | i = i | ¬φ | φ ∧ φ | KP
i φ | [π]φ

π ::= ?φ | ii | π; π | π ∪ π | π∗

Definition
A protocol is a function P mapping any agent pair ab to a formula Pab called the protocol
condition.

Example
The Learn New Secrets (LNS) protocol is LNSab := ¬Sab.

7

Semantics

A state is a tuple (G , σ) where G = (A, N, S) is an initial graph and σ a call sequence.

Let Nσ and Sσ be the resulting relations after executing σ.

G , σ ⊨ Nx y :⇔ (x , y) ∈ Nσ

G , σ ⊨ Sx y :⇔ (x , y) ∈ Sσ

G , σ ⊨ Cx y :⇔ xy ∈ σ or yx ∈ σ

G , σ ⊨ x = y :⇔ x = y
G , σ ⊨ KP

a φ iff G , σ′ ⊨ φ for all (G , σ′) ∼P
a (G , σ)

G , σ ⊨ [π]φ iff G , σ′ ⊨ φ for all (G , σ′) ∈ JπK(G , σ)

J?φK(G , σ) := {(G , σ) | G , σ |= φ}
JabK(G , σ) := {(G , (σ; ab)) | G , σ |= Nab}

Jπ; π′K(G , σ) :=
⋃

{Jπ′K(G , σ′) | (G , σ′) ∈ JπK(G , σ)}
Jπ ∪ π′K(G , σ) := JπK(G , σ) ∪ Jπ′K(G , σ)

Jπ∗K(G , σ) :=
⋃

{JπnK(G , σ) | n ∈ N}

8

Semantics

A state is a tuple (G , σ) where G = (A, N, S) is an initial graph and σ a call sequence.

Let Nσ and Sσ be the resulting relations after executing σ.

G , σ ⊨ Nx y :⇔ (x , y) ∈ Nσ

G , σ ⊨ Sx y :⇔ (x , y) ∈ Sσ

G , σ ⊨ Cx y :⇔ xy ∈ σ or yx ∈ σ

G , σ ⊨ x = y :⇔ x = y
G , σ ⊨ KP

a φ iff G , σ′ ⊨ φ for all (G , σ′) ∼P
a (G , σ)

G , σ ⊨ [π]φ iff G , σ′ ⊨ φ for all (G , σ′) ∈ JπK(G , σ)

J?φK(G , σ) := {(G , σ) | G , σ |= φ}
JabK(G , σ) := {(G , (σ; ab)) | G , σ |= Nab}

Jπ; π′K(G , σ) :=
⋃

{Jπ′K(G , σ′) | (G , σ′) ∈ JπK(G , σ)}
Jπ ∪ π′K(G , σ) := JπK(G , σ) ∪ Jπ′K(G , σ)

Jπ∗K(G , σ) :=
⋃

{JπnK(G , σ) | n ∈ N}

8

Semantics

A state is a tuple (G , σ) where G = (A, N, S) is an initial graph and σ a call sequence.

Let Nσ and Sσ be the resulting relations after executing σ.

G , σ ⊨ Nx y :⇔ (x , y) ∈ Nσ

G , σ ⊨ Sx y :⇔ (x , y) ∈ Sσ

G , σ ⊨ Cx y :⇔ xy ∈ σ or yx ∈ σ

G , σ ⊨ x = y :⇔ x = y
G , σ ⊨ KP

a φ iff G , σ′ ⊨ φ for all (G , σ′) ∼P
a (G , σ)

G , σ ⊨ [π]φ iff G , σ′ ⊨ φ for all (G , σ′) ∈ JπK(G , σ)

J?φK(G , σ) := {(G , σ) | G , σ |= φ}
JabK(G , σ) := {(G , (σ; ab)) | G , σ |= Nab}

Jπ; π′K(G , σ) :=
⋃

{Jπ′K(G , σ′) | (G , σ′) ∈ JπK(G , σ)}
Jπ ∪ π′K(G , σ) := JπK(G , σ) ∪ Jπ′K(G , σ)

Jπ∗K(G , σ) :=
⋃

{JπnK(G , σ) | n ∈ N} 8

Protocol-dependent Epistemic Alternatives

Definition

For any agent a and protocol P let ∼P
a be the smallest relation such that:

• (G , ϵ) ∼P
a (G , ϵ);

• if (G , σ) ∼P
a (G , τ), Nσ

b = Nτ
b , Sσ

b = Sτ
b , and G , σ |= Pab and G , τ |= Pab,

then (G , σ; ab) ∼P
a (G , τ ; ab);

if (G , σ) ∼P
a (G , τ), Nσ

b = Nτ
b , Sσ

b = Sτ
b , and G , σ |= Pba and at G , τ |= Pab,

then (G , σ; ba) ∼P
a (G , τ ; ba);

• if (G , σ) ∼P
a (G , τ) and a ̸∈ {c, d , e, f } such that G , σ |= Pcd and G , τ |= Pef ,

then (G , σ; cd) ∼P
a (G , τ ; ef).

Note: This is synchronous!

9

Protocol-dependent Epistemic Alternatives

Definition

For any agent a and protocol P let ∼P
a be the smallest relation such that:

• (G , ϵ) ∼P
a (G , ϵ);

• if (G , σ) ∼P
a (G , τ), Nσ

b = Nτ
b , Sσ

b = Sτ
b , and G , σ |= Pab and G , τ |= Pab,

then (G , σ; ab) ∼P
a (G , τ ; ab);

if (G , σ) ∼P
a (G , τ), Nσ

b = Nτ
b , Sσ

b = Sτ
b , and G , σ |= Pba and at G , τ |= Pab,

then (G , σ; ba) ∼P
a (G , τ ; ba);

• if (G , σ) ∼P
a (G , τ) and a ̸∈ {c, d , e, f } such that G , σ |= Pcd and G , τ |= Pef ,

then (G , σ; cd) ∼P
a (G , τ ; ef).

Note: This is synchronous!

9

Avoiding Russel’s Protocol

Protocol(condition)s may not refer to themselves!

That is, we do not allow this:

Pab := . . . KP
a . . .

(see exercise)

10

Implementation

Learning Haskell in one slide

A function f with the type a -> b:

f :: a -> b
f x = x + x

Note: no parentheses for function application!

GHCI> f 10 + 3
23
GHCI> map f [1,2,3]
[2,4,6]

A definition of Boolean Formulas and tuples thereof:

data BForm = Atom Int | Not BForm | And BForm BForm | Or BForm BForm
type MyPair = (BForm, BForm)

11

Learning Haskell in one slide

A function f with the type a -> b:

f :: a -> b
f x = x + x

Note: no parentheses for function application!

GHCI> f 10 + 3
23
GHCI> map f [1,2,3]
[2,4,6]

A definition of Boolean Formulas and tuples thereof:

data BForm = Atom Int | Not BForm | And BForm BForm | Or BForm BForm
type MyPair = (BForm, BForm)

11

Learning Haskell in one slide

A function f with the type a -> b:

f :: a -> b
f x = x + x

Note: no parentheses for function application!

GHCI> f 10 + 3
23
GHCI> map f [1,2,3]
[2,4,6]

A definition of Boolean Formulas and tuples thereof:

data BForm = Atom Int | Not BForm | And BForm BForm | Or BForm BForm
type MyPair = (BForm, BForm)

11

Syntax in Haskell

data Form
= N Agent Agent
| S Agent Agent
| C Agent Agent
| Same Agent Agent
| Top
| Neg Form
| Conj [Form]
| Disj [Form]
| K Agent Protocol Form
| HatK Agent Protocol Form
| Box Prog Form
| Dia Prog Form
| ForallAg FormWithAgentVar
| ExistsAg FormWithAgentVar

data Prog = Test Form
| Call Agent Agent
| Seq [Prog]
| Cup [Prog]
| CupAg ProgWithAgentVar
| Star Prog

12

Syntax in Haskell

data Form
= N Agent Agent
| S Agent Agent
| C Agent Agent
| Same Agent Agent
| Top
| Neg Form
| Conj [Form]
| Disj [Form]
| K Agent Protocol Form
| HatK Agent Protocol Form
| Box Prog Form
| Dia Prog Form
| ForallAg FormWithAgentVar
| ExistsAg FormWithAgentVar

data Prog = Test Form
| Call Agent Agent
| Seq [Prog]
| Cup [Prog]
| CupAg ProgWithAgentVar
| Star Prog

12

Graphs in Haskell

type Agent = Int

type Relation = IntMap IntSet

type Graph = (Relation, Relation)

type Call = (Agent,Agent)
type Sequence = [Call]

type State = (Graph,Sequence)

13

Making Graphs

GoMoChe> totalInit 3
(fromList [(0,fromList [0,1,2]),(1,fromList [0,1,2]),(2,fromList [0,1,2])]
,fromList [(0,fromList [0]),(1,fromList [1]),(2,fromList [2])])

GoMoChe> ppGraphShort (totalInit 3)
"Abc.aBc.abC"
GoMoChe> ppGraphShort (totalInit 4)
"Abcd.aBcd.abCd.abcD"

More generally:

GoMoChe> :t parseGraph
parseGraph :: String -> Graph
GoMoChe> ppGraphShort (parseGraph "01-12-231-3 I4")
"Ab.Bc.bCd.D"

14

Making Graphs

GoMoChe> totalInit 3
(fromList [(0,fromList [0,1,2]),(1,fromList [0,1,2]),(2,fromList [0,1,2])]
,fromList [(0,fromList [0]),(1,fromList [1]),(2,fromList [2])])

GoMoChe> ppGraphShort (totalInit 3)
"Abc.aBc.abC"
GoMoChe> ppGraphShort (totalInit 4)
"Abcd.aBcd.abCd.abcD"

More generally:

GoMoChe> :t parseGraph
parseGraph :: String -> Graph
GoMoChe> ppGraphShort (parseGraph "01-12-231-3 I4")
"Ab.Bc.bCd.D"

14

Making Graphs

GoMoChe> totalInit 3
(fromList [(0,fromList [0,1,2]),(1,fromList [0,1,2]),(2,fromList [0,1,2])]
,fromList [(0,fromList [0]),(1,fromList [1]),(2,fromList [2])])

GoMoChe> ppGraphShort (totalInit 3)
"Abc.aBc.abC"
GoMoChe> ppGraphShort (totalInit 4)
"Abcd.aBcd.abCd.abcD"

More generally:

GoMoChe> :t parseGraph
parseGraph :: String -> Graph
GoMoChe> ppGraphShort (parseGraph "01-12-231-3 I4")
"Ab.Bc.bCd.D" 14

Semantics in Haskell

The following main model checking function implements ⊨.

eval :: State -> Form -> Bool
eval state (N a b) = b `IntSet.member` (fst (uncurry calls state) `at` a)
eval state (S a b) = b `IntSet.member` (snd (uncurry calls state) `at` a)
eval state (C a b) = (a,b) `elem` snd state
eval _ (Same a b) = a == b
eval _ Top = True
eval state (Neg f) = not $ eval state f
eval state (Conj fs) = all (eval state) fs
eval state (Disj fs) = any (eval state) fs
eval state (K a p f) = all (`eval` f) (epistAlt a p state)
eval state (HatK a p f) = any (`eval` f) (epistAlt a p state)
eval state (Box p f) = all (`eval` f) (Set.toList $ runs state p)
eval state (Dia p f) = any (`eval` f) (Set.toList $ runs state p)
eval state (ForallAg f) = all (eval state . f) (agentsOf $ fst state)
eval state (ExistsAg f) = any (eval state . f) (agentsOf $ fst state) 15

Easy Example

We also define |= as an infix alias of eval looking more like ⊨.

GoMoChe> (totalInit 4, []) |= S 1 1
True

GoMoChe> (totalInit 4, []) |= S 1 2
False

GoMoChe> (totalInit 4, [(1,2)]) |= S 1 2
True

16

Epistemic equivalences in Haskell

epistAlt :: Agent -> Protocol -> State -> [State]
epistAlt _ _ (g, []) = [(g, [])] -- initial graph is common knowledge!
epistAlt a proto (g, history) =

let (prev, lastevent) = (init history, last history)
lastcall@(x,y) = lastevent

in sort $
if a `isin` lastevent

then [(g',althist ++ [lastcall]) -- alternative histories and same last call
| (g',althist) <- epistAlt a proto (g,prev)
, eval (g',prev) (proto lastcall)
, eval (g',althist) (proto lastcall)
, localSameFor x (calls g' althist) (calls g prev) -- inspect-then-merge!
, localSameFor y (calls g' althist) (calls g prev)]

else [(g',cs'++[altevent]) -- alternative histories and alternative last calls
| (g',cs') <- epistAlt a proto (g,prev)
, altevent <- allowedCalls proto (g',cs')
, not $ a `isin` altevent]

The above implements the synchronous ∼i as above. See the async branch if you are curious!

17

Epistemic equivalences in Haskell

epistAlt :: Agent -> Protocol -> State -> [State]
epistAlt _ _ (g, []) = [(g, [])] -- initial graph is common knowledge!
epistAlt a proto (g, history) =

let (prev, lastevent) = (init history, last history)
lastcall@(x,y) = lastevent

in sort $
if a `isin` lastevent

then [(g',althist ++ [lastcall]) -- alternative histories and same last call
| (g',althist) <- epistAlt a proto (g,prev)
, eval (g',prev) (proto lastcall)
, eval (g',althist) (proto lastcall)
, localSameFor x (calls g' althist) (calls g prev) -- inspect-then-merge!
, localSameFor y (calls g' althist) (calls g prev)]

else [(g',cs'++[altevent]) -- alternative histories and alternative last calls
| (g',cs') <- epistAlt a proto (g,prev)
, altevent <- allowedCalls proto (g',cs')
, not $ a `isin` altevent]

The above implements the synchronous ∼i as above. See the async branch if you are curious! 17

List of useful functions

Making and showing graphs: totalInit, parseGraph, ppGraph

Use total graph and parse sequence: after

Formula abbreviations: con, dis, expert, allExperts, superExperts

Predefined protocols: anyCall, lns, cmo, pig

Hakell hints:

• Use TAB completion in the terminal!

• Use :t whatever to see the type of things.

• Get more information about things with :i whatever

18

List of useful functions

Making and showing graphs: totalInit, parseGraph, ppGraph

Use total graph and parse sequence: after

Formula abbreviations: con, dis, expert, allExperts, superExperts

Predefined protocols: anyCall, lns, cmo, pig

Hakell hints:

• Use TAB completion in the terminal!

• Use :t whatever to see the type of things.

• Get more information about things with :i whatever

18

Life should be easy

Additional convenience functions

isSuperSuccSequence :: Protocol -> State -> Sequence -> Bool
isSuperSuccSequence proto (g,sigma) cs =

(g, sigma ++ cs) |= ForallAg (`superExpert` proto)

statistics :: Protocol -> State -> (Int,Int)
statistics proto (g,sigma) =

(length succSequ, length sequ - length succSequ) where
sequ = sequences proto (g,sigma) \\ [[]]
succSequ = filter (isSuccSequence (g,sigma)) sequ

19

Life should be easy

Additional convenience functions

isSuperSuccSequence :: Protocol -> State -> Sequence -> Bool
isSuperSuccSequence proto (g,sigma) cs =

(g, sigma ++ cs) |= ForallAg (`superExpert` proto)

statistics :: Protocol -> State -> (Int,Int)
statistics proto (g,sigma) =

(length succSequ, length sequ - length succSequ) where
sequ = sequences proto (g,sigma) \\ [[]]
succSequ = filter (isSuccSequence (g,sigma)) sequ

19

Execution Trees

Running Example

0 1

2 3

nExample

20

Execution Trees in GoMoChe

GoMoChe> :i tree
tree :: Protocol -> State -> ExecutionTree

GoMoChe> tree lns (nExample,[])
0-1-02-013 I4
(2,0): 02-1-02-013 02-1-02-3
(2,0)(3,0): 0123-1-02-0123 023-1-02-023
(2,0)(3,0)(0,1): 0123-0123-02-0123 0123-0123-02-023
(2,0)(3,0)(0,1)(3,1): 0123-0123-02-0123 0123-0123-02-0123
(2,0)(3,0)(3,1): 0123-0123-02-0123 023-0123-02-0123
(2,0)(3,0)(3,1)(0,1): 0123-0123-02-0123 0123-0123-02-0123
(2,0)(3,1): 02-013-02-013 02-13-02-13
...

21

Execution Trees in GoMoChe

GoMoChe> :i tree
tree :: Protocol -> State -> ExecutionTree

GoMoChe> tree lns (nExample,[])
0-1-02-013 I4
(2,0): 02-1-02-013 02-1-02-3
(2,0)(3,0): 0123-1-02-0123 023-1-02-023
(2,0)(3,0)(0,1): 0123-0123-02-0123 0123-0123-02-023
(2,0)(3,0)(0,1)(3,1): 0123-0123-02-0123 0123-0123-02-0123
(2,0)(3,0)(3,1): 0123-0123-02-0123 023-0123-02-0123
(2,0)(3,0)(3,1)(0,1): 0123-0123-02-0123 0123-0123-02-0123
(2,0)(3,1): 02-013-02-013 02-13-02-13
...

21

Show me the tree!

Using the wonderful GraphViz library (https://graphviz.org/) we can also actually draw the tree.

pdf $ tree lns (nExample,[])

(Not fitting on slide; run it yourself and zoom in to actually see something the resulting picture!)

22

https://graphviz.org/

Execution Trees with epistemic edges

We can further annotate the tree with indistinguishability relation(s).

GoMoChe> :i pdfTreeWith
pdfTreeWith :: [Agent] -> Int -> Int -> Protocol -> ExecutionTree -> IO ()

(The first Int limits the depths of the tree, the second controls the arrangement of nodes.)

GoMoChe> pdfTreeWith [2] 2 1 lns (tree lns (nExample,[]))

AbCD.B.AC.AbCD

AC.aBD.AC.aBD

c

AC.B.AC.abD

da

db ABD.ABD.aC.AbD

AbD.ABD.aC.ABD

c

ABD.ABD.aC.aBD

c

ABD.aBD.aC.ABD

cc

c

c

AbCD.B.AbCD.AbD

AbD.B.aC.AbD

ab

db

ca

A.aBD.aC.aBD
c

ba

da

AC.aBD.AC.aBD

ca

A.B.aC.abD

ca da db

23

Execution Trees with epistemic edges

We can further annotate the tree with indistinguishability relation(s).

GoMoChe> :i pdfTreeWith
pdfTreeWith :: [Agent] -> Int -> Int -> Protocol -> ExecutionTree -> IO ()

(The first Int limits the depths of the tree, the second controls the arrangement of nodes.)

GoMoChe> pdfTreeWith [2] 2 1 lns (tree lns (nExample,[]))

AbCD.B.AC.AbCD

AC.aBD.AC.aBD

c

AC.B.AC.abD

da

db ABD.ABD.aC.AbD

AbD.ABD.aC.ABD

c

ABD.ABD.aC.aBD

c

ABD.aBD.aC.ABD

cc

c

c

AbCD.B.AbCD.AbD

AbD.B.aC.AbD

ab

db

ca

A.aBD.aC.aBD
c

ba

da

AC.aBD.AC.aBD

ca

A.B.aC.abD

ca da db

23

Execution Trees with epistemic edges

We can further annotate the tree with indistinguishability relation(s).

GoMoChe> :i pdfTreeWith
pdfTreeWith :: [Agent] -> Int -> Int -> Protocol -> ExecutionTree -> IO ()

(The first Int limits the depths of the tree, the second controls the arrangement of nodes.)

GoMoChe> pdfTreeWith [2] 2 1 lns (tree lns (nExample,[]))

AbCD.B.AC.AbCD

AC.aBD.AC.aBD

c

AC.B.AC.abD

da

db ABD.ABD.aC.AbD

AbD.ABD.aC.ABD

c

ABD.ABD.aC.aBD

c

ABD.aBD.aC.ABD

cc

c

c

AbCD.B.AbCD.AbD

AbD.B.aC.AbD

ab

db

ca

A.aBD.aC.aBD
c

ba

da

AC.aBD.AC.aBD

ca

A.B.aC.abD

ca da db

23

Cheap optimization tricks for search problems

• W.l.o.g. fix the first call to be ab.

• Fix the first two calls to be either ab; bc or to be ab; cd .

Wait, why is this w.l.o.g.?

24

Cheap optimization tricks for search problems

• W.l.o.g. fix the first call to be ab.

• Fix the first two calls to be either ab; bc or to be ab; cd .

Wait, why is this w.l.o.g.?

24

Examples

Answering “Motivation” question 1

• After the call sequence ab; bc; ac, does agent a know that agent b knows the secret of
agent c?

GoMoChe> after "ab;bc;ac" |= Kn a anyCall (S b c)
True

25

Answering “Motivation” question 1

• After the call sequence ab; bc; ac, does agent a know that agent b knows the secret of
agent c?

GoMoChe> after "ab;bc;ac" |= Kn a anyCall (S b c)
True

25

Answering “Motivation” question 2

• Is the call sequence ab; cd ; ac ; bd successful, i.e. do all agents know all secrets afterwards?
Moreover, is it super successful, i.e. do all agents know that all agents know all secrets?

GoMoChe> after "ab;cd;ac;bd" |= allExperts
True
GoMoChe> after "ab;cd;ac;bd" |= allSuperExperts lns
False

26

Answering “Motivation” question 2

• Is the call sequence ab; cd ; ac ; bd successful, i.e. do all agents know all secrets afterwards?
Moreover, is it super successful, i.e. do all agents know that all agents know all secrets?

GoMoChe> after "ab;cd;ac;bd" |= allExperts
True
GoMoChe> after "ab;cd;ac;bd" |= allSuperExperts lns
False

26

Answering “Motivation” question 3

• Given the gossip graph below, how many LNS sequences are (un)successful?

a

b

c

d

GoMoChe> statistics lns (parseGraph "01-12-231-3 I4",[])
(57,20)

27

Answering “Motivation” question 3

• Given the gossip graph below, how many LNS sequences are (un)successful?

a

b

c

d

GoMoChe> statistics lns (parseGraph "01-12-231-3 I4",[])
(57,20)

27

Answering “Motivation” question 4

• After the sequence ab; bc; cd ; bd , does agent a know that if they call agent b then b will
tell a the secret d? That is, do we have ab; bc; cd ; bd ⊨ Ka[ab]Sad or not?

GoMoChe> after "ab;bc;cd;bd" |= K a anyCall (Box (Call a b) (S a d))
False
GoMoChe> after "ab;bc;cd;bd" |= K a lns (Box (Call a b) (S a d))
True

Answer: it depends!

We have ab; bc; cd ; bd ⊭ KANY
a [ab]Sad but ab; bc; cd ; bd ⊨ KLNS

a [ab]Sad .

28

Answering “Motivation” question 4

• After the sequence ab; bc; cd ; bd , does agent a know that if they call agent b then b will
tell a the secret d? That is, do we have ab; bc; cd ; bd ⊨ Ka[ab]Sad or not?

GoMoChe> after "ab;bc;cd;bd" |= K a anyCall (Box (Call a b) (S a d))
False
GoMoChe> after "ab;bc;cd;bd" |= K a lns (Box (Call a b) (S a d))
True

Answer: it depends!

We have ab; bc; cd ; bd ⊭ KANY
a [ab]Sad but ab; bc; cd ; bd ⊨ KLNS

a [ab]Sad .

28

Answering “Motivation” question 4

• After the sequence ab; bc; cd ; bd , does agent a know that if they call agent b then b will
tell a the secret d? That is, do we have ab; bc; cd ; bd ⊨ Ka[ab]Sad or not?

GoMoChe> after "ab;bc;cd;bd" |= K a anyCall (Box (Call a b) (S a d))
False
GoMoChe> after "ab;bc;cd;bd" |= K a lns (Box (Call a b) (S a d))
True

Answer: it depends!

We have ab; bc; cd ; bd ⊭ KANY
a [ab]Sad but ab; bc; cd ; bd ⊨ KLNS

a [ab]Sad .

28

Complex Example: Knowledge Overviews

knowledgeOverview :: State -> Protocol -> IO ()

This generates tables such as these:
GoMoChe> knowledgeOverview (totalInit 4, parseSequence "ab;bc;cd;da;ab") anyCall

a b c d
ab ab ab c d
bc ab abc abc d
cd ab abc abcd CD abcd CD
da abcd A D abc abcd CD abcd A CD
ab abcd ABCD abcd AB abcd CD abcd A CD

GoMoChe> knowledgeOverview (totalInit 4, parseSequence "ab;bc;cd;da;ab") lns
a b c d

ab ab ab c d
bc ab abc abc d
cd ab abc abcd CD abcd CD
da abcd _ __ abc abcd CD abcd _ __
ab abcd ____ abcd ____ abcd ABCD abcd ____

29

Complex Example: Knowledge Overviews

knowledgeOverview :: State -> Protocol -> IO ()

This generates tables such as these:
GoMoChe> knowledgeOverview (totalInit 4, parseSequence "ab;bc;cd;da;ab") anyCall

a b c d
ab ab ab c d
bc ab abc abc d
cd ab abc abcd CD abcd CD
da abcd A D abc abcd CD abcd A CD
ab abcd ABCD abcd AB abcd CD abcd A CD

GoMoChe> knowledgeOverview (totalInit 4, parseSequence "ab;bc;cd;da;ab") lns
a b c d

ab ab ab c d
bc ab abc abc d
cd ab abc abcd CD abcd CD
da abcd _ __ abc abcd CD abcd _ __
ab abcd ____ abcd ____ abcd ABCD abcd ____

29

References, Links, Exercises

• GoMoChe: Gossip Model Checking, extended abstract LAMAS&SR 2022, Rennes.
https://malv.in/2022/LAMASSR-GoMoChe.pdf

• Appendix C of Everyone knows that everyone knows: gossip protocols for super experts.
https://arxiv.org/pdf/2011.13203.pdf#page=37

• Further examples: test/results.hs, (run them with stack test).

30

https://malv.in/2022/LAMASSR-GoMoChe.pdf
https://arxiv.org/pdf/2011.13203.pdf#page=37
https://github.com/m4lvin/GoMoChe/blob/main/test/results.hs

	Motivation
	Theory
	Implementation
	Execution Trees
	Examples

