Reasoning about Gossip

Hans van Ditmarsch CNRS

► Gossip protocol

Materials found on http://reasoningaboutgossip.eu

Call Condition and Termination Condition

Let us begin slightly vague:

A gossip protocol is a procedure that, until a termination condition is satisfied, selects a call for execution that satisfies a call condition.

Call condition: Assume a set \mathcal{G} of gossip graphs containing G, and a call sequence σ . We recall pair (G, σ) is a gossip state.

- ▶ A call condition for a call ab is a property P_{ab} that can be determined with respect to gossip state (G, σ) , and that is epistemic and symmetric. Assume a knows the number of b.
- ▶ epistemic: P_{ab} holds for all (H, τ) such that $(H, \tau) \sim_a (G, \sigma)$.
- **symmetric**: replacing designated a, b in P_{ab} by c, d gets P_{cd} .

Termination condition: An agent who knows all secrets is an expert. All agents are experts is a termination condition. An agent who knows that all agents know all secrets is a super expert. All agents are super experts is another termination condition.

Gossip Protocol

Given is a set $\mathcal G$ of initial gossip graphs with $G\in\mathcal G$ designated. A gossip protocol P is a non-deterministic algorithm with G and the empty sequence ϵ as input and a call sequence σ as output. The typical termination condition is that all agents are experts.

Gossip Protocol While not all agents are experts, choose $a, b \in A$ with $a \neq b$ such that b is a neighbour of a and a holds, and execute call a b.

Protocol-permitted The condition that b is a neighbour of a is not considered part of the protocol condition. A call ab is possible if b is a neighbour of a. A call sequence is possible if it consists of possible calls. Given G and G, possible call G is P-permitted (protocol-permitted) if G holds. A call sequence is P-permitted if all calls in the sequence are P-permitted (G is always P-permitted). Protocol Extension Given a set G of gossip graphs and $G \in G$, the extension G is the set of P-permitted call sequences on G. We write G if G

Different Views on Distributed Gossip Protocols

Gossip Protocol While not all agents are experts, choose $a, b \in A$ with $a \neq b$ such that b is a neighbour of a and a holds, and execute call a b.

An alternative formulation avoids abnormal termination ('getting stuck'):

While not all agents are experts and there are $a, b \in A$ with $a \neq b$ such that b is a neighbour of a and P_{ab} holds, choose $a, b \in A$ with $a \neq b$ such that b is a neighbour of a and P_{ab} holds, and execute call ab.

If we omit the termination condition we require stabilization: Choose $a, b \in A$ with $a \neq b$ such that b is a neighbour of a and P_{ab} holds, and execute call ab.

Different Views on Distributed Gossip Protocols

Gossip Protocol While not all agents are experts, choose $a, b \in A$ with $a \neq b$ such that b is a neighbour of a and a holds, and execute call a b.

The distributed nature of gossip protocol appears as follows: Each $a \in A$ runs **a-program**: choose $b \in A$ with $a \neq b$ such that b is a neighbour of a and P_{ab} holds, and execute call ab (or else fail). The environment ϵ runs ϵ -program: while not all agents are experts, choose $a \in A$ and execute **a-program**.

Again, if we delete 'while not all agents are experts' we require stabilization instead of termination.

Observation Model

Given (arbitrary) observation relations \sim_a and set $\mathcal G$ of initial gossip graphs, the observation model $\mathcal M(\mathcal G)$ consists of all pairs (G,σ) s.t. $G\in\mathcal G$ and σ is possible, and relations $(G,\sigma)\sim_a(H,\tau)$ and $(G,\sigma)\to(G,\sigma.ab)$ connecting gossip states (we may write \to_{ab} instead of \to to denote the executed call). Special cases:

- $ightharpoonup \mathcal{G} = \{G\}$: G is common knowledge among the agents
- $ightharpoonup \mathcal{G}$ is the the set of all lines, all circles, all trees, . . .
- $ightharpoonup \mathcal{G} = \{I\}$: the initial secret distribution is common knowledge
- $ightharpoonup {\cal S}$: the set of all sets of initial gossip graphs (${\cal I}$: all secr. dist.)

 $\mathcal{M}_{\mathsf{P}}(\mathcal{G})$ is the restriction of $\mathcal{M}(\mathcal{G})$ to protocol extension $\mathsf{P}(\mathcal{G})$. It consists of all gossip states (G,σ) such that σ is P-permitted.

We informally allow infinite call sequences denoted σ^ω . With infinite branch $\epsilon \to ab \to ab.cd \to ab.cd.ef \to \ldots$ in the observation model we associate infinite call sequence $ab.cd.ef \ldots$. An infinite call sequence is P-permitted if any (therefore) finite prefix is P-permitted.

Example Observation Model

Partial view of observation model for initial secret distribution ι and agents a, b, c, d. It has more branches and has infinite depth.

This was synchronous. Asychronously, $ab \sim_a ab.ab$, $ab \sim_a ab.ac$, . . .

Maximal, Fair, Successful, Terminal, Gossip Problem

Given gossip protocol P, set of initial gossip graphs \mathcal{G} , $G \in \mathcal{G}$, and P-permitted call sequence σ (or perm. infinite call sequence σ^{ω}):

- $ightharpoonup \sigma$ is **maximal** if for any call *ab*, σ .*ab* is not permitted.
- σ^{ω} is **fair** if for any call ab, if for all i there is j > i such that call ab is P-permitted after $\sigma^{\omega}|j$, then for all i there is j > i such that $\sigma^{\omega}[j] = ab$. (σ^{ω} is unfair if it is not fair)
- $ightharpoonup \sigma$ is **successful** if after σ all agents are experts.
- $ightharpoonup \sigma$ is **terminal** if σ is an execution of protocol P.

Terminal may not be maximal! Further, given gossip protocol P:

- ▶ P is strongly successful on \mathcal{G} if for all $G \in \mathcal{G}$, all maximal $\sigma \in P(G)$ and all fair infinite $\sigma^{\omega} \in \mathcal{M}_P(G)$ are successful.
- P is weakly successful on \mathcal{G} if for all $G \in \mathcal{G}$, there is maximal $\sigma \in \mathsf{P}(G)$ or a fair infinite $\sigma^{\omega} \in \mathcal{M}_{\mathsf{P}}(G)$ that is successful.

Protocol P is wea/str successful if it is wea/str successful on S (often, T). The gossip problem is whether P is wea/str successful.

Distributed Epistemic Gossip Protocols

```
\begin{array}{lll} \mathsf{ANY}_{ab} & = & \top \\ \mathsf{CMO}_{ab} & = & ab, ba \notin \sigma \\ \mathsf{wCMO}_{ab} & = & ab \notin \sigma \\ \mathsf{LNS}_{ab} & = & b \notin S_a^\sigma \\ \mathsf{PIG}_{ab} & = & \exists \tau \sim_a \sigma, \exists c, c \in S_a^\tau \setminus S_b^\tau \text{ or } c \in S_b^\tau \setminus S_a^\tau \\ \mathsf{KIG}_{ab} & = & \forall \tau \sim_a \sigma, \exists c, c \in S_a^\tau \setminus S_b^\tau \text{ or } c \in S_b^\tau \setminus S_a^\tau \\ \mathsf{SPI}_{ab} & = & \operatorname{spider: if } a \text{ calls } b, a \text{ gets the token (if any) from } b \\ \mathsf{TOK}_{ab} & = & \operatorname{token: if } a \text{ calls } b, a \text{ hands her token to } b \\ \end{array}
```

```
ANY = any call is permitted

CMO = after call ab, a and b may not call each other

wCMO = after call ab, a may not call b

LNS = a does not know ('hold') the secret of b

PIG = a considers possible that a or b will learn a secret

KIG = a knows that a or b will learn a secret

SPI = token holders may make a call, and then keep their token

TOK = token holders may make a call, and then lose their token
```

Relations between Gossip Protocols

- ► LNS, CMO, wCMO only permit finite call sequences.
- ► ANY, PIG permit infinite call sequences.
- lacktriangle ANY permits fair infinite call sequences on ${\cal I}$
- lacktriangle PIG does not permit fair infinite call sequences on ${\mathcal I}$
- ▶ LNS = KIG (that is, extensions LNS \subseteq KIG and KIG \subseteq LNS) for asynchronous observation relations
- lacktriangle all gossip protocols are successful on ${\mathcal I}$ (initial secret distr.)

Lots more to follow in the coming lectures, for synchronous relations, for arbitrary initial gossip graphs, for ... For now, another comparison of protocol extensions:

Gossip Protocol Extension Hierarchy

