Reasoning about Gossip

Hans van Ditmarsch CNRS

► Call, call sequence, semantics of calls

Materials found on http://reasoningaboutgossip.eu

Gossip terminology — call

A is the set of agents or callers.

A gossip graph G is a triple (A, N, S) where $N \subseteq A \times A$ is the neighbour relation and $S \subseteq A \times A$ is the secret relation.

If $N = A \times A$ (all agents can call each other), the gossip graph is complete. We then call the gossip graph a secret distribution denoted S. The initial secret distribution I is the triple (A, A^2, I) .

A call or telephone call is a pair from $A \times A$. For $(a, b) \in A \times A$ we write ab, and we require $a \neq b$. We say that a and b are *involved* in call ab, that a is the *caller*, and b the *callee*.

Write S_a for $\{b \in A \mid (a, b) \in S\}$. If $S_a = A$, agent a is an expert.

Simplified notation for secret distributions: a|b|c|d, abc|ab|abc|d, ...

Gossip terminology — semantics of a call

Given gossip graph (A, N, S).

pushpull: The result of applying call *ab* is the gossip graph (A, N, S^{ab}) , where $S^{ab} = S \cup (\{(a, b), (b, a)\} \circ S)$. a and b learn each other's secrets

Alternatively,
$$S_a^{ab} = S_b^{ab} = S_a \cup S_b$$
 and $S_c^{ab} = S_c$ for $c \neq a, b$.

Variants (not varying the notation)

- **push:** The result of making call ab is the gossip graph (A, N, S^{ab}) , where $S^{ab} = S \cup (\{(b, a)\} \circ S)$. b learns the secrets of a
- **pull:** The result of making call *ab* is the gossip graph (A, N, S^{ab}) , where $S^{ab} = S \cup (\{(a, b)\} \circ S)$. a learns the secrets of b
- **dynamic pushpull:** The result of call *ab* is the gossip graph (A, N^{ab}, S^{ab}) , where $N^{ab} = N \cup (\{(a, b), (b, a)\} \circ N)$ and $S^{ab} = S \cup (\{(a,b),(b,a)\} \circ S).$
 - a and b learn each other's secrets and neighbours/numbers

Gossip terminology — call sequence

A call sequence is inductively defined as: ϵ is a call sequence, if σ is a call sequence and ab is a call, then $\sigma.ab$ is a call sequence.

We write (all with obvious inductive definitions) :

- $ightharpoonup |\sigma|$ to denote the length of a call sequence
- $ightharpoonup \sigma[i]$ for the *i*th call of the sequence
- $ightharpoonup \sigma | i$ for the first i calls of the sequence

Applying σ to a secret relation $S: S^{\epsilon} = S$; and $S^{\sigma.ab} = (S^{\sigma})^{ab}$. Same for N. By G^{σ} , where G = (A, N, S), we mean (A, N, S^{σ}) . Given secret distribution $I^{\sigma} = (A, A^{2}, I^{\sigma})$ we write σ_{a} for I_{a}^{σ} .

Executing a call sequence in the initial secret distribution a|b|c|d:

 $a|b|c|d \xrightarrow{ab} ab|ab|c|d \xrightarrow{cd} ab|ab|cd|cd \xrightarrow{ac}$ $abcd|ab|abcd|cd \xrightarrow{bd} abcd|abcd|abcd|abcd$

Gossip terminology — full information

local view $v_a^=(\sigma)$ for agent a of call sequence σ :

$$\begin{array}{lll} \mathsf{v}_{\mathsf{a}}^{=}(\epsilon) & := & \epsilon \\ \mathsf{v}_{\mathsf{a}}^{=}(\sigma.bc) & := & \mathsf{v}_{\mathsf{a}}^{=}(\sigma) \\ \mathsf{v}_{\mathsf{a}}^{=}(\sigma.ab) & := & \mathsf{v}_{\mathsf{a}}^{=}(\sigma).ab \\ \mathsf{v}_{\mathsf{a}}^{=}(\sigma.ba) & := & \mathsf{v}_{\mathsf{b}}^{=}(\sigma).ba \end{array}$$

full view $v_a^{\sim}(\sigma)$ for agent a of call sequence σ :

$$\begin{array}{lll} \mathsf{v}_{\mathsf{a}}^{\sim}(\epsilon) & := & \epsilon \\ \mathsf{v}_{\mathsf{a}}^{\sim}(\sigma.bc) & := & \mathsf{v}_{\mathsf{a}}^{\sim}(\sigma) \\ \mathsf{v}_{\mathsf{a}}^{\sim}(\sigma.ab) & := & (\mathsf{v}_{\mathsf{a}}^{\sim}(\sigma),\mathsf{v}_{\mathsf{b}}^{\sim}(\sigma)).ab \\ \mathsf{v}_{\mathsf{a}}^{\sim}(\sigma.ba) & := & (\mathsf{v}_{\mathsf{b}}^{\sim}(\sigma),\mathsf{v}_{\mathsf{a}}^{\sim}(\sigma)).ba \end{array}$$

a dag!

synchronous full view $v_a^{\approx}(\sigma)$ for agent a of call sequence σ :

$$\begin{array}{lll} \mathsf{v}_{\mathsf{a}}^{\approx}(\epsilon) & := & \epsilon \\ \mathsf{v}_{\mathsf{a}}^{\approx}(\sigma.bc) & := & \mathsf{v}_{\mathsf{a}}^{\approx}(\sigma). \bullet \\ \mathsf{v}_{\mathsf{a}}^{\approx}(\sigma.ab) & := & (\mathsf{v}_{\mathsf{a}}^{\approx}(\sigma), \mathsf{v}_{\mathsf{b}}^{\approx}(\sigma)).ab \\ \mathsf{v}_{\mathsf{a}}^{\approx}(\sigma.ba) & := & (\mathsf{v}_{\mathsf{b}}^{\approx}(\sigma), \mathsf{v}_{\mathsf{a}}^{\approx}(\sigma)).ba \end{array}$$

Gossip terminology — example of full information

Let call sequence $\sigma = ab.bc.ab$ be given.

- $\mathbf{v}_{a}^{=}(\sigma) = ab.ab, \ \mathbf{v}_{b}^{=}(\sigma) = ab.bc.ab \ and \ \mathbf{v}_{c}^{=}(\sigma) = bc$
- $\mathbf{v}_{a}^{\sim}(\sigma) = \mathbf{v}_{b}^{\sim}(\sigma) = (ab, ab.bc).ab, \mathbf{v}_{c}^{\sim}(\sigma) = ab.bc$
- $\vee v_a^{\approx}(\sigma) = v_b^{\approx}(\sigma) = (ab. \bullet, (ab, \bullet).bc).ab, v_c^{\approx}(\sigma) = (ab, \bullet).bc. \bullet$

Pairing the empty call sequence ϵ with a sequence σ delivers σ ! A picture says more than a thousand symbols . . .

(asynchronous) full view

synchronous full view

Gossip terminology — observation relation

Given $a \in A$ and gossip graphs G = (A, N, S), H = (A, O, T). The asynchronous observation relation \sim_a is the smallest equivalence relation such that:

- $ightharpoonup (G,\epsilon) \sim_a (H,\epsilon)$ iff $N_a = O_a$ and $S_a = T_a$
- ▶ $(G, \sigma.bc) \sim_a (H, \tau)$ iff $(G, \sigma) \sim_a (H, \tau)$ and $a \notin \{b, c\}$
- ▶ $(G, \sigma.ab) \sim_a (H, \tau.ab)$ and $(G, \sigma.ba) \sim_a (H, \tau.ba)$ iff $(G, \sigma) \sim_a (H, \tau)$ and $S_b^{\sigma} = T_b^{\tau}$

The synchronous observation relation \approx_a is the smallest ...s.t.:

- $ightharpoonup (G,\epsilon) pprox_a (H,\epsilon) ext{ iff } N_a = O_a ext{ and } S_a = T_a$
- ► $(G, \sigma.bc) \approx_a (H, \tau.de)$ iff $(G, \sigma) \approx_a (H, \tau)$ and $a \notin \{b, c, d, e\}$
- ▶ $(G, \sigma.ab) \approx_a (H, \tau.ab)$ and $(G, \sigma.ba) \approx_a (H, \tau.ba)$ iff $(G, \sigma) \approx_a (H, \tau)$ and $S_b^{\sigma} = T_b^{\tau}$

$$(G,\sigma)\sim_a (H, au)$$
 implies $S^\sigma_a=T^ au_a$; $(G,\sigma)\approx_a (H, au)$ implies $S^\sigma_a=T^ au_a$.

Note that $\approx_a \subseteq \sim_a!$

Observation relation for secret distributions

Recalling crucial clauses from the (a)synchronous relation:

- $ightharpoonup (G, \sigma.ab) \sim_a (H, \tau.ab) \text{ iff } (G, \sigma) \sim_a (H, \tau) \text{ and } S_b^{\sigma} = T_b^{\tau}$
- ▶ $(G, \sigma.bc) \approx_a (H, \tau.de)$ iff $(G, \sigma) \approx_a (H, \tau)$ and $a \notin \{b, c, d, e\}$

Given (G, σ) , agent a knows a proposition if it is true for all (H, τ) such that $(G, \sigma) \sim_a (H, \tau)$. Same for \approx_a . Precise but not formal!

If agents are not uncertain about a set of initial gossip graphs, but certain about the initial secret distribution, we get:

- $ightharpoonup \epsilon \sim_a \epsilon$
- $ightharpoonup \sigma.bc \sim_{\mathsf{a}} \tau.de \text{ iff } \sigma \sim_{\mathsf{a}} \tau \text{ and } a \notin \{b,c,d,e\}$
- $\sigma.ab\sim_a \tau.ab$ and $\sigma.ba\sim_a \tau.ba$ iff $\sigma\sim_a \tau$ and $\sigma_b=\tau_b$

where for the synchronous relation we write \approx_a instead of \sim_a and then get as the second clause

 $ightharpoonup \sigma.bc \approx_a \tau.de \text{ iff } \sigma \approx_a \tau \text{ and } a \notin \{b,c,d,e\}$

Other observation relations

Recalling crucial clauses from the (a)synchronous relation:

$$ightharpoonup (G, \sigma.ab) \sim_a (H, \tau.ab) \text{ iff } (G, \sigma) \sim_a (H, \tau) \text{ and } S_b^{\sigma} = T_b^{\tau}$$

►
$$(G, \sigma.bc) \approx_a (H, \tau.de)$$
 iff $(G, \sigma) \approx_a (H, \tau)$ and $a \notin \{b, c, d, e\}$

Other observation relations (\sim_a also used as arbitrary obs. rel.)

Agents observe all calls (e.g. cup phones; a synchronous relation)

▶
$$(G, \sigma.bc) \approx_a (H, \tau.bc)$$
 iff $(G, \sigma) \approx_a (H, \tau)$, for any $b, c \in A$

Merge and inspect (agents see the output but not the input)

$$\blacktriangleright \ (G, \sigma.ab) \sim_a (H, \tau.ab) \text{ iff } (G, \sigma) \sim_a (H, \tau) \text{ and } S_b^{\sigma} \cup S_a^{\sigma} = T_b^{\tau} \cup T_a^{\tau}$$

Asymmetric observation (a sees caller b but not the callee c)

►
$$(G, \sigma.bc) \approx_a (H, \tau.bd)$$
 iff $(G, \sigma) \approx_a (H, \tau)$ and $a \notin \{b, c, d\}$

All you know (full-information protocol in distributed computing)

$$ightharpoonup (G,\sigma) \sim_a^{\mathsf{v}} (H,\tau)$$
 iff $N_a = O_a$, $S_a = T_a$, and $\mathsf{v}_a^{\sim}(\sigma) = \mathsf{v}_a^{\sim}(\tau)$

Note:
$$(G, \sigma.ab) \sim_a^{\mathsf{v}} (H, \tau.ab)$$
 iff $(G, \sigma) \sim_a^{\mathsf{v}} (H, \tau)$ and $(G, \sigma) \sim_b^{\mathsf{v}} (H, \tau)$!