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Model checking with the standard Kripke models used in (Dynamic) Epistemic Logic leads to scala-
bility issues. Hence alternative representations have been developed, in particular symbolic structures
based on Binary Decision Diagrams (BDDs) and succinct models based on mental programs. While
symbolic structures have been shown to perform well in practice, their theoretical complexity was
not known so far. On the other hand, for succinct models model checking is known to be PSPACE-
complete, but no implementations are available.

We close this gap and directly relate the two representations. We show that model checking
DEL on symbolic structures encoded with BDDs is also PSPACE-complete. In fact, already model
checking Epistemic Logic without dynamics is PSPACE-complete on symbolic structures. We also
provide direct translations between BDDs and mental programs. Both translations yield exponential
outputs. For the translation from mental programs to BDDs we show that no small translation exists.
For the other direction we conjecture the same.

1 Introduction

Reasoning about knowledge and its representation has become an important line of study in Artificial
Intelligence, most importantly in Epistemic Planning [5]. A widely used logical framework to reason
about the knowledge of multiple intelligent agents is Epistemic Logic, a version of Modal Logic [8]. Its
standard semantics uses Kripke models with possible worlds to represent what agents know. Moreover,
knowledge can change. For example in a card game, a player may announce its card to a subset of players
privately. Then the knowledge of all players changes: some players come to know the card, and other
players may still observe that such a private announcement is made. To formalise and reason about such
knowledge updates, a widely used framework is Dynamic Epistemic Logic (DEL) [4, 13], of which the
simplest version is Public Announcement Logic (PAL) [25, 23].

One way to make DEL and PAL practically useful is model checking: given a model and a formula,
decide whether the formula holds. It is known that on Kripke models the computational complexity of
this task for PAL is in P and for DEL is in PSPACE [1]. Model-checkers for PAL have been used in
verifying protocols with security applications like the Russian card problem [14, 22]. Moreover, DEL
model checkers like SMCDEL [17] can be used in combination with large language models (LLMs) in
order to improve the explainability and reasoning ability compared to plain LLMs [26].

Model checking has scalability issues, because Kripke models enumerate all possible situations. For
example, every possible way to distribute cards among players needs a possible world, leading to an
exponentially large model. Different techniques have been developed to represent Kripke models more
compactly, to make epistemic model-checking easier. Here we focus on two such works for DEL:

* Symbolic structures based on Binary Decision Diagrams (BDDs) [7, 17, 24]. This approach uses

the famous data structure from [9] and is similar to techniques for temporal logics [10].

* Succinct models based on mental programs (MPs) [12], a variant of PDL [16], and similar to
regular languages. In particular these programs can encode the epistemic accessibility relations.
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Example 1.1. To illustrate the different representations of Kripke models, consider the model below.
It has four worlds and two agents. Agent A considers all g-worlds possible and knows nothing else,
whereas Agent B only considers p-worlds possible and knows the value of q. Next to the model we show
how these relations are encoded by BDDs and by mental programs. We note that one relation results in
a relatively small BDD, while the other is more suitable to be encoded as a short mental programs.

Agent A Agent B

q P'A(gq)

BDD

MP | (p+LUp<+<T)(g«T) p+ T
Both approaches lead to a new model-checking problem, because when moving from one representa-
tion to another, the complexity of model checking can differ. Interestingly, for the succinct representation
theoretical results about the model checking complexity are available, but not yet for the symbolic struc-
tures. With the present article we close this gap. We summarise the known and new results in Table 1.
Note that when using symbolic structures, model checking EL, PAL and DEL all become equally hard.
We discuss why this happens after we introduce knowledge structures in Definition 2.1.

Representation ‘ Kripke models Symbolic Structures Succinct models
EL-S5 in P [15] PSPACE: Theorem 2.11 -

PAL-S5 in P [13] PSPACE: Theorem 2.11 -

DEL-S5 PSPACE [20]  PSPACE: Theorem 2.17 -

EL-K in P [15] PSPACE: Theorem 2.16 PSPACE [2]
PAL-K in P [8] PSPACE: Theorem 2.16 PSPACE [12]
DEL-K PSPACE [1] PSPACE: Theorem 2.16 PSPACE [12]

Table 1: Model checking complexity results. We write “PSPACE” for PSPACE-complete here.

While the EL and PAL rows in Table 1 show an easier complexity for Kripke models than for sym-
bolic structures, the key difference lies in input size: symbolic structures can represent Kripke models
exponentially more succinctly. Thus, polynomial-time algorithms for Kripke models may become ex-
ponential when measured against symbolic input. On the other hand, the DEL rows show that symbolic
structures do not lead to an additional complexity blowup. The results suggest that one should not
translate Kripke models to other representations, but work directly with the symbolic or succinct rep-
resentation, i.e. a given system description should be formalized directly into a structure with BDDs or
mental programs, to avoid ever using exponential memory that would be needed by a Kripke model.

The symbolic structures have been implemented and benchmarks show that they outperform standard
Kripke models, but the succinct representations have not been implemented, with the exception of [21].



To better understand the relation between the different encodings of relations, we provide translations
from BDDs to mental programs and vice versa, and study the translation complexity.

In the remainder of this section we define the languages. In section 2 we prove that symbolic model
checking is PSPACE-complete, first for PAL-SS5, then for DEL-K. In section 3 we recall mental programs
used in succinct DEL, and in section 4 we provide translations between BDDs and mental programs. We
conclude with comments about multi-pointed models and ongoing implementation work in section 5.

Definition 1.2. Throughout this article we work with finite vocabularies V that come with an order. For
any vocabulary V we define Boolean formulas f € Z5(V) by B =T | L|p|-B|BAB where pe V.
A state is a subset of the vocabulary s C'V. That is, we identify states with the atomic propositions that
are true at them. The Boolean semantics are defined as usual and denoted by s F 3.

To work with both PAL and DEL, we will use a general language definition with a parameter set D.

Definition 1.3. For any vocabulary V and any set D the language £p(V) is givenby ¢ :=T | L | p |
Q| oAQ | K@ |[d)@ where peV, i€ Aandd € D. Concretely, Zg| is given by D = &, ZLpp| is given
byD={l¢ | ¢ € LpaL}, and LpEL is given by letting D be the set of events from Definition 2.3.

The simpler logic we consider is Public Announcement Logic (PAL), where the only actions are
truthful public announcements, i.e. D is the set of all formulas, used as announcements. More general
actions include private announcements or factual (also called ontic) changes. In DEL these are usually
modeled by letting D be the set of all pointed action models [4, 13], but here we will mostly use the
transformers from [7]. Yet another option are the succinct event models from [12]. All these languages
come with a mutual but well-founded recursion: elements of D are made using formulas, and formulas
use elements of D. We refer to [13, Chapter 6] for details.

The following definition will be relevant to determine the input size of model checking problems.

Definition 1.4. We define the length |- |: ZLparL (V) U LpeL(V) — N of formulas as follows

T == 1 |=o| = |o|+1 I['v]o| = |y|+|p|+1
|L] = o1 A@| = Q1|+ +1 |2 x]o] = |Z[+]o]+1
lpl = 1 K| = |o[+1

where | 27| denotes the size of a transformer as in Definition 2.4 below.

2 Symbolic Structures with BDDs

We recall the definition and main features of the knowledge and belief structures from [7, 17]. In general
we assume that elements of .Z3 are represented using Binary Decision Diagrams (BDDs) from [9].

Definition 2.1. A knowledge structure is a tuple % = (V,0,0) where V is a finite set called vocabulary,
0 € L(V) is the state law and O; C'V for each i € A are the observables. A state of # isa s C 'V such
that s E 0. A pointed knowledge structure is a tuple (% ,s) where s is a state of .7 .

Knowledge structures encode the knowledge of agents (that in Kripke models is represented by
a relation) with a set of observables. Each O; C V encodes a relation R; C Z (V) x & (V) given by
Rist <= sNO; = O;Nt. Note that this is always an equivalence, matching S5 Kripke models. Hence
the corresponding frameworks are called EL-S5, PAL-S5 and DEL-S5. The more general belief structures
(for EL-K, PAL-K and DEL-K) can encode arbitrary relations using formulas over a double vocabulary.
In addition to this, note that in Table 1, even though model checking for PAL and EL were much easier
than DEL (P for PAL,EL whereas PSPACE for DEL) using Kripke models, when it comes to model



checking using symbolic structures, all three of them becomes equally hard (PSPACE). This is because
all possible states in a Kripke model are listed distinctly when the model is represented in a general
Kripke structure. Therefore, going over all of them does not cost any computational resource beyond
the size of the Kripke model itself. But when represented using symbolic structures, only the set of
propositions V is part of the input. Hence in order to iterate through indistinguishable possibilities of an
agent (for example for checking formulas with K; modalities), all possible (at most 2/V1) states that come
out of V have to be traversed and checked. Since such K; modalities are present in EL, PAL as well as
DEL, model checking all three of them becomes equally hard.

Definition 2.2. A belief structure is a tuple % = (V,0,Q) where V and 0 are as in Definition 2.1 and
for each agent i we have an observation law Q; € £5(V UV') where V' denotes a fresh copy of V.

The intuition behind €; is that it is true at a pair of states iff the states are related. That is, a Boolean
formula Q; € Z3(V UV’) encodes the relation R; C 2(V) x & (V) given by R;st : <= sUt' F Q;. For
example, if Qajice = p A ¢’ then from any state where p is true Alice will consider any other state where
q is true possible. In particular we will have a loop at the state {p,q} because {p,q} U{p,q} EpA{q.
This encoding is also widely used for temporal model checking [10, Section 8.3].

Analogous to how symbolic structures encode Kripke models, transformers encode action models. To

keep track of old propositional values before factual change, we introduce another set of fresh variables,
denoted by the operation (-)°. Just as V' is a fresh copy of V, V° is a fresh copy of V_.
Definition 2.3. A transformer is a tuple 2" = (V*,0%,V_,6_,Q.F) where V* is such that VNV = g,
0" € ZpeL (VUVT) is called the event law, V_ C 'V is called the modified subset, 6_ : V_ — Z5(VUV™)
is called the change law and Q € Z3(V UV') for each i. An event is a pair (% ,x) where x CV*. To
update (F ,s) with (),x), let F x x := (V" 0" Q") where V" =V UJVtUV?,

0" = [V_ > VI(OA6T | 2)A N (g [V- = V2](6-(q)))
qev—

where [p — W@ denotes a substitution, QI = ([V_ — VO][(V_) — (V°)'|Q:) ANQ/, and lastly the new
actual state is s := (s\V_)U (sNV_)°UxU{p e V_|sUxF 6_(p)}.

Since our goal is a complexity study of model-checking algorithms, we need to be precise about the
size of all structures we take as inputs. We define the size of transformers as follows.

Definition 2.4. Given a transformer 2 = (V*,07,V_| 9_,Qf), we define its size by mutual recursion
with Definition 1.4 as | 2| := |V 4107 |+ |V_|+ X ,ev_ 10— (p)|+ Lics |9 .

Also Definition 2.3 above and the following two definitions are mutually recursive.

Definition 2.5. The semantics for ZpaL and ZpeL on knowledge and belief structures are as follows.
We omit the standard Boolean cases.

1. For knowledge structures: (% ,s) E K;@ iff for all states t of Z, if sNO; =t N O;, then (F,t) E ¢.
For belief structures: (% ,s) E K;@ iff for all states t of F, if sUt' E Q;, then (F ,t) E ¢.

2. (F,s)Elylo iff (F,s) E vy implies (FY,s) E @ where FV := (V,0 A||y|| ,0).

3. (F,s)E 2 xloiff (F,s)ExCVT]0T implies (F x Z',s°) F ¢.

Definition 2.6. For any structure % and any formula @ € ZLpar(V) U ZLper(V) we define its local
Boolean translation ||@|| & as follows.

ITlz:=T ltlz=L lpllz=pr [-¥iz:="lvis [viAvwlzs:=lwlsAlvlz



If 7 is a knowledge structure, let |Kiy| 7z :=V(V\ 0;)(0 = ||W||z). If F is a belief structure, let
IKiyl| 7 := V(6" = (Qi — ([l¥ll)"). Let (WISl 7 == [Wllz = 1G]l v, where FV :=(V,0 A
|¥ll7.0). Lastly, let |2, x)g] 5 = [[x CV*]0%]| 7 = [V = V][x CVFV- 5 0- (V)] [@l] 7
where F x 2 is from Definition 2.3.

The above Boolean translation is equivalent, i.e. .#,s E @ iff s F ||@|| #. The SMCDEL implementa-
tion [19] uses the translation, as it is faster than using Definition 2.5. For any Kripke model there exists
an equivalent symbolic structure and vice versa, and similarly for action models and transformers [17].

There are now six different model checking problems: The three languages £, -£paL and ZpeL
can each be interpreted on knowledge structures (S5) and on belief structures (K). We first consider the
easiest case PAL-S5 and then the most general case DEL-K. Just like general Kripke models are more
general than those for S5, the Q; can express anything that O; can do, i.e. every knowledge structure can
be seen as a belief structure, replacing O;, with the formula Q; := A ,co,(p + p'). This needs roughly
twice as much memory, resulting in no significant increase of the model-checking input size.

2.1 Symbolic Model Checking PAL-SS

To define the model checking problem for symbolic structures we need to say how exactly the input is
given. For V and O; this is obvious, but for 8 we stress that we assume a BDD and not a formula.
Definition 2.7. The symbolic model checking task for PAL for S5 is the following. Given a knowledge
structure F = (V,0,0;) where 0 is a Boolean function encoded as a BDD, an actual state s and a
Sformula @ € ZpaL (V) which may contain dynamic modalities, decide whether % ,s E ¢. The input size
is |V|+ 0]+ |0i| + |@| where |0 is the node count of the BDD and |@| is the length of the formula.

We will show that this problem is PSPACE complete. The following theorem shows that the problem
is already PSPACE-hard for EL (i.e. without announcements). This means that the symbolic representa-
tion matters, because model checking EL on standard Kripke models is in P [15], but it becomes harder
when moving from Kripke models to symbolic structures.

Theorem 2.8. Model checking £g, on knowledge structures is PSPACE-hard.

Proof. We reduce the evaluation of a Quantified Boolean Formula (QBF) to model checking -Z¢| on a
knowledge structure as follows. Before going further into QBFs, let us introduce a notation. For a set of
propositions P = {p1, pa, ..., pk}, the notation VP = VpVp;...Vpi. Same is true for IP.

Take any QBF (wlog. in prenex form) y = VP, 3P,...VP,_3P,¢ where ¢ is a Boolean formula
(possibly in CNF) over Py U...UP,. Note that there are no free variables in y. Let V = |J; P, and let
0 = T. Let the set of agents be {1,...,n} and let O; :== V \ P, for each i. Let .# = (V,0,0;) and let
s=. Let I?i(p := —K;—¢. We now have the following equivalences:

v is QBF-true <= FVP3dP,...VP,_13P,0 QBF truth definition
<~ sFEVP3IP...VP,_13P,@ no free variables
<~ sEV(V\01)3(V\O32)...Y(V\O,_1)3(V\O,)¢e by definition of O;
— Z,sEKK,.. K, K, by Definition 2.5

The last formula is of the same length as the given QBF. Hence we have a polynomial reduction from
QBF-truth to model checking knowledge structures. O

In short, it is hard to do model-checking in polynomial time on symbolic structures since we need
to go over every possible valuation on V while evaluating K;y, unlike in Kripke models where these
valuations are enumerated explicitly in the model and thus part of the input size.

Given that £ is a fragment of %pa| and -£pg we have the following corollary.



Corollary 2.9. Model checking ZpaL and ZpeL on knowledge structures is PSPACE-hard.

Having shown hardness, we now turn to membership. For simplicity we focus on PAL in this section.
We will define an algorithm and then show its correctness and its memory usage. Note that to stay in
PSPACE we cannot use the common PAL reduction axioms (see [13, Def 4.53]) as they would blow up
the size of formulas by making copies of the announced formulas. For example, consider [!K;p|K;p. The
reduction axiom would give us the following equivalences:

[''Kip]Kip|Kip = ([!Kip]Kip) — Ki[![!Kip]Kiplp = ((Kip) — Ki['Kip]p) — Ki[!((Kip) — Ki['Kip]p)]p

Here the last formula which would then be model checked is huge in size with respect to the initial
['[!K:p]Kip])K;p. In general, rewriting [![![!...[![!K;p]]Kip]Kip]...]Kip leads to a formula with 2" copies
of K;p and thus needing exponential space in terms of the original formula length.

Our Algorithm 1 check takes as inputs a knowledge structure .%, a PAL formula ¢ and a list of
formulas L. For the model checking problem L is initially empty and populated by the algorithm itself.

Algorithm 1: check
Input: knowledge structure .# = (V, 0, 0), list of formulas L = [{y, ..., 4], state s C V of
F x Ly x - X L, formula @
Precondition: s is a state of .# (i.e. s = 0) and L can be announced on (.#,s).
Output: true or false
1 switch ¢ do
2 case pdo returnp € s ;
3 case —¢ do return NOT check(#,L,s,9) ;
4 case ¢; A\ @ do return (check(.%,L,s,¢;) AND check(Z,L,s,®)) ;
5 case K;¢; do
6
7
8
9

foreachr CV do
ift = 0 AND tNO; =sN O, then

stillExists :=true // did t ‘‘survive’’ the announcements in L7
foreach j € [0,...,k] do

10 L if NOT check(.#, [ly,...,¢;_1],t,¢;) then stillExists :=false;

1 if still1Ezists AND NOT check(.Z, [ly, ... l],t,¢;) then

12 L return false

13 return true

14 case [y, do
15 L if check(.#,L,s, y) then return check(.Z,L+ +[y],s, ;) else return true ;

The algorithm proceeds by recursion on the formula ¢. There are two challenges we need to take
care of so that the algorithm takes only polynomial space:

* Firstly, we cannot compute the BDDs of announcements as in Definition 2.6, because short for-
mulas may have BDDs of exponential size. Hence we track announcements in the list L.

* When evaluating formulas of the form K;¢, we must not compute the exponentially large set of all
states. But we can iterate over them instead, without ever storing the full set.

To make both solutions compatible with each other, when evaluating K;¢ we check in Line 9 whether a
state still exists after the sequence of announcements in L, using recursive calls. This technique is similar



to the model checking algorithm for succinct DEL in [1]. It is also similar to the context-dependent
semantics in [27], where the announcements are stored as a list of formulas and the model update is not
triggered until K;¢ formulas are evaluated. We now formally state that check is correct.

Lemma 2.10. Given a pointed knowledge structure %, a state s of %, a list of PAL-S5 formulas L =
(0o, ..., 4] and a PAL-S5 formula @, we have F "0~ s @ iff check(.Z,L,s, @) returns true.

Proof sketch. By induction on the size of inputs ¢, .% and L. The difficult case is for K;¢;. It iterates over
all valuations (line 6) checking whether they agree on what i observes (line 7) and recursively verifies ¢
as per Definition 2.5. The survival of the valuation by the sequence of announcements L is checked in
line 9. For a detailed proof, see the appendix.

Next comes our main result for this subsection.

Theorem 2.11. Model checking Zpay ,-LEL on knowledge structures is PSPACE-complete.

Proof. Hardness follows from Corollary 2.9. By Lemma 2.10 it remains to show that algorithm 1 only
takes space polynomial in the size of the input. Membership for .Z¢| follows as a special case of Zpa, .
At any instance of a call to check(.%,L,s, @), exactly one switch case matches. Every recursive call
taken in check(.%,L,s, @) is of size no more than the size of the current input. Moreover, in the call
stack, there are at most linear many recursive calls left to evaluate at any given instance. In each call, the
space used is polynomial. The most intensive is the case for K;¢;. We iterate over every valuationt C V,
which needs memory in the size of |VI. Note that we never store the whole list of states nor results. ]

We note that the model checking algorithm performing well in practice (and used in SMCDEL [19])
is not in PSPACE. To see this, take a Boolean formula for which the BDD has to be large, for example
consider the vocabulary V = {p,... p2,} and the formula @ := (p; Apus1) V...V (pu A ppin) Which
has length in &'(n). Suppose then we model check [!@]p on a knowledge structure .%# with state law
6 = T using the SMCDEL algorithm. This means we update the state law (stored as a BDD) from T
to O A\||@||#. As discussed in [9, p. 681] the BDD of this formula needs 2"*! many nodes. Hence the
resulting knowledge structure needs exponential space and this is not possible in PSPACE.

In summary, there is a trade-off between time and space here: Algorithm 1 will need exponential
time to evaluate K;, whereas the BDD-based method may need exponential space for [!¢].

2.2 Symbolic Model Checking DEL-K

We now generalize the setting from the previous section in two aspects. First, we switch from S5 to K by
using belief structures instead of knowledge structures. Second, we move from public announcements to
general events. We already discussed that DEL can be seen as an extension of PAL in the introduction.
We now illustrate how the move from S5 to K, and the additional feature of factual change are dealt with
symbolically. The difference between S5 and K is captured by O; CV and Q; € Z3(VUV™): O; always
encodes an equivalence relation for a hard notion of knowledge, while Q; can encode arbitrary relations
to describe belief. Factual change is captured by V_ and 6_ in the transformers from Definition 2.3,
describing which propositions are changed and how [17, Section 2.8].

Theorem 2.12. Model checking £\ on belief structures is PSPACE-hard.

Proof. Similar to the proof of Theorem 2.8, but instead of O; let Q; be the BDD of A\ ,cp.(p > p'). This
BDD has size linear in |V|. Hence we reduce QBF truth to model checking % on belief structures. [

Again, given that Zg_ is a fragment of Zpa. and ZpgL we have the following corollary.



Corollary 2.13. Model checking ZLppL and £peL on belief structures is PSPACE-hard.

Algorithm 2: checkDELK
Input : Knowledge structure .7 = (V, 0,Q), list of events L = [(£0,X0), - - -, (Zk, X))
state s C V, formula ¢ € Zper(V)
Precondition: s is a state of .%# (i.e. s = 0) and L can be executed on (.7, s).
Output: true or false
1 switch ¢ do
2 case p do

3 if L = [ then
4 | returnp € s
// Compute the final state
5 foreach j € [0,... k| do
6 L s:=(s\Vj_)U{qgeV,_|checkDELK(.Z,[(Z ,x0),...,(Z ,xj)],s, [xjr C
+ —

Vi ]ej (9)}
7 B return p € s
8 case = do

9 L return NOT checkDELK(.%,L,s, @)

10 case @1 A\ ¢y do
1 L return (checkDELK(.%,L,s, ;) AND checkDELK(.%,L,s, ¢,))

12 case K;y do

13 foreach CV, 1 CV, ..., TV do

14 if 7 F 6 then

15 if sUr"F Q; AND x[ U EQJ . AND ..., xf Ut E Q] then

16 accessible :=true // did t ‘‘survive’’ the actions in L?
17 foreach j € [0,... k] do

18 if not checkDELK(.Z, [( 20,1ty ), -+, (Zj-1,])],1, [t T V;']6]") then
19 L accessible :=false

20 if accessible then

21 if not checkDELK(.Z, [( 20,15 ), - -, (217 )],1, ¥) then

2 | return false

23 B return true

24 case [2,x]y do

25 if checkDELK(.#,L,s,[x TV']6") // checking the precondition

26 then

27 | return (checkDELK(.7,L++[(2",x)],5,¥))

28 B return true

Similar to the previous section about PAL-S5, we prove membership by defining an algorithm. Also
here the challenge is that we cannot compute the potentially too large BDD of the new state law after
updating. Fortunately, also a similar solution works: the list L will now not just contain a list of public
announcements, but a list of transformers. Then to check .%,sF [27,x]¢ we add that transformer to L.



Later, when we check K;@, we iterate “on the fly” over the states ¢ that may be the result of the sequence
of transformers, including the additional atoms introduced and taking into account the factual change.

Lemma 2.14. Given a pointed knowledge structure % = (V,0,0;),s CV and a DEL formula ¢, we
have F s E @ iff checkDELK(.Z,[],s, @) returns true.

Proof sketch. Similar to Lemma 2.10, see appendix for the full proof.
Theorem 2.15. checkDELK(.Z,[|,s, @) takes at most polynomial space with respect to size of input.

Proof. An argument analogous to that for Theorem 2.11 shows that algorithm 2 runs using space at most
polynomial in size of the input. O

Together we now get our main result for DEL-K and as a result PAL-K and EL-K as well.
Theorem 2.16. Model checking Lk , LraL and £peL on belief structures is PSPACE-complete.

Proof. Using algorithm 2, which is correct by Lemma 2.14 it is correct and uses polynomial space by
Theorem 2.15, we have membership. By Corollary 2.13, we have hardness. O

Moreover, since DEL-SS5 is a special case of DEL-K we have the following.
Theorem 2.17. Model checking Z£pe| on knowledge structures is PSPACE-complete.
Proof sketch. Just like in Theorem 2.12, for membership use the equivalent Q; = A ,cp, p < p’ (for the
belief structure) and Q;r = /\p reor pT < p™’ (for any transformer). The resulting belief structure is at
most twice the size of the given knowledge structures. The hardness result is from Theorem 2.8.

3 Succinct Models with Mental Programs

An alternative to the symbolic structures used in the previous section is the framework of Succinct DEL as
presented by [12]. It is based on a version of (Propositional Dynamic Logic) PDL, also called Dynamic
Logic of Propositional Assignment (DLPA) [3].

Definition 3.1. The language of mental programs over a vocabulary V is defined by
mu=p<T|p—L|B? |nUrn|mr|nNT

where p € V and B is a Boolean formula over V. Let Iy denote the set of all mental programs over V.
The length of a mental program is defined as follows.

p< T = 1 1B?] = |B| mm| = |m|+ [
lp— L] =1 ImUm| = |m|+|m] ImNm| = |m|+|m]
In the rest of the article we are mostly interested in how a single relation over the set of states (V)
can be encoded. Hence we omit further details about succinct DEL and refer to [12] for how Kripke

models can be encoded using one mental program for each agent, and how actions and events can be
encoded using mental programs as well.

Definition 3.2. Two states s,t C'V are related by a mental program T (written as s Lt)as follows:

p—T

U
§——t <= t=sU{p} sy e s St ors Bt
L ;T big T
sT5 0t = r=5\{p} s—2t <= uCV:s—uandu >t
B? TN . T d b(%3
sBht = s=tandsEp § =2t <= s—tands >t

We define Ry := {(s,t) €V xV | s 1},
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Example 3.3. From the state {p,q} we can reach the state {p} using the mental program q < L. From
the state {p,q} we can reach the states {p} and {q} using the mental program (p <— L)U (g < L).
Other versions of mental programs [12] also include the general assignment p < 8 and inverse 7.
However, these operators do not add expressivity, as shown in [18]. Also the following shows that mental
programs as defined above are complete in the sense that they can encode all relations.
Definition 3.4. For any x Cy C'V, let of(x,y) := Ape, P A Npey\x 7P For any set x CV we define
change(x) := ;pex((p <= T)U (p < L)), and for any state s C 'V we define goto(s,V) := (ipes(p
) 3 Gpevialp < 1))
We illustrate Definition 3.4 with some examples. First, x = {p} and y = {p,q,r} then we have
of (x,y) = pA—g A —r. Second, if x = {q,r} then change(x) = (g~ TUg + L);(r< TUr«+ 1).
Third, if V = {p,q,r} then goto({p},V)=p <+ T;q < Lir« L.
Lemma 3.5. For any relation R CV XV there is a mental program 7 such that Ry = R.

Proof. Let Tt := Uy y)er(0f (x,V)?; goto(y)) and apply Definition 3.2. O

In [12] it is shown how Kripke models can be encoded with mental programs and that model checking
DEL on such succinct models is in PSPACE. This is shown not by giving a PSPACE algorithm, but an
alternating Turing machine algorithm and then using the fact that PSPACE = APTIME [11]. This means
the algorithm given cannot easily be translated to an actual implementation. The authors suggest that “a
model checking procedure for our succinct language may use BDD techniques of [6]” [12, p. 130].

4 Comparison and Translations

To compare BDDs and mental programs, we present a list of examples in Table 2. Each row stands for
a class of relations or an operation on relations, and shows how it can be represented or executed, in the
different representations. Notably, observing more propositions, and thus going from the total relation
(in row 2) to the identity (in row 5), leads to a shorter mental program, but to a longer Boolean formula.

Mental program 7 Boolean function Q Observable O
empty relation 71 1 n/a
total relation change(V) T 1%}
only observe p change(V\ {p}) pp {p}
only observe {p,q} change(V\{p,q}) (PP )N (g q) {p,q}
identity relation 7T Npev(p < P') 1%
single edge s — ¢ 20f(s,V);change(V);of (t,V)  of(s,V) Aof (¢, V') n/a
complement n/a Given f3, use —f3 n/a
inverse See translation in [18]. Given B3, swap p with p’ etc. no change
composition Given 7, and mp, use ;M See Def. 4.1 n/a
intersection Given 7y and mp, use 1y N,  Given By and B, use B; A B, union

Table 2: Examples of relations and operations.

The “n/a” entries in Table 2 mean that this operation cannot be defined (in general) with the given
representation. For example, given a mental program we cannot easily define one for the complement
(Row 7). All mentioned operations can be done with Boolean functions, but with observational variables
(last column) three operations are impossible because they yield non-equivalence relations.
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4.1 Translating Mental Programs to BDDs

Given a mental program we now want to encode the same relation over subsets of V using a Boolean
function. We give the following definition using Boolean formulas on the right side, but it also provides
a mapping of mental programs to BDDs by reading all connectives on the right side as BDD operations.
Recall that ITy is the set of mental programs over V and .£3(V UV’) is the set of Boolean formulas over
the double vocabulary where the prime makes a fresh copy of each atomic proposition letter.

Definition 4.1. We now define a function tr : Ily — Z5(V UV").

tr(pT) :=p'AN\psgev(@ < ¢)  tr(mUm) :=tr(m)Vir(m)
tr(p < L) == p' AN\ prgev(@ < @) tr(mim) = [V'=V]@EV (tr(m) Atr(m)'))
tr(B?) =BANpev(p < p) tr(m Nmp) :=tr(m) Atr(m)

The left cases of Definition 4.1 are easy, they mostly consist of the “do not change anything else”
conjunctions. Among the right three cases, the one standing out is the composition 7;; . Here we write
[ — -] for simultaneous substitution of atoms in ¢. For example, [{p’,q'} — {p,q}|(p'Aq¢") = (pNq").
Strictly speaking in [A — B]¢ both A and B are ordered lists and we use the implicit bijection between
them as the substitution function [17, Def. 1.0.3]. We note that tr(m,)" is [V—=V'][V/=V"]tr(m,), i.e. this
changes the formula from the vocabulary V UV’ to the vocabulary V' UV". The Boolean quantification
3V’ then eliminates all single-primed variables and lastly the outermost substitution ensures that the
resulting formula is over the vocabulary VUV’ as we want. We stress that 3 is only expensive when done
syntactically. As a BDD operation it in fact deletes variables and nodes from a BDD [9].

Theorem 4.2. The translation from Def. 4.1 is correct: for any s,t CV, we have s = t iff (sUt') E tr(m).
Proof sketch. By induction on the structure of 7 and applying Definition 3.2. See appendix for proof.

Note that already translating p < T needs &'(|V|) many nodes in the BDD. This illustrates the high
length of formulas resulting from this translation. However, it is not a problem specific to the particular
translation given above, but applies to any correct translation, as the following theorem states.

Theorem 4.3. For any translation tr' from mental programs to BDDs there exists a mental program Tt
such that tr' (1) has size exponential in |7|.

Proof sketch. Take any vocabulary V = {p;,...pa,} with this ordering fixed. Let 7 := 3? where  is the
Boolean formula (p; A ppi1) V...V (pu A pusn) from page 7. We show that the BDD corresponding to
the mental program 7 has at least 2"*! many nodes. For the details, see the appendix.

4.2 Translating BDDs to Mental Programs

We write (19 «-- (p;) — t1) to denote a node in a BDD that is labelled with variable p and has an else-
edge (dotted) pointing to node 7 and a then-edge (solid) pointing to node #;. Note that p; may come from
V or from V', and in the latter case we write pg. For the leaves, we just write T and L.

Definition 4.4. We define a function ©: BDD(y vy x [V UV'] — Iy where [V UV'] is the set of all lists
with elements from V UV'. We distinguish different cases for the given BDD Q.

t(LL):=2L (T, [):=2T f(Tq, [Pic ) = ((pxc J-??U.(pk < 1)) e(T [Prras s pa])
@ = (e~ () b lpieeap) =0, P P P i
(px < Liz(to, [Pr+15-5Pnl)) ifi=k
T(Q = (tO €= (pi) — l]), [pkv"van = U<pk <~ T;T(t17[pk+17"7pn])>
((pr < L)U(px < 1)) 7(Q, [Prt1;--,Pn]) otherwise

Lastly, define Ty : BDDyy» — Iy by 1(Q) := ©(Q, [po,- - -, Pu))-


https://malv.in/phdthesis/gattinger-thesis.pdf#theorem.1.0.3
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Both “otherwise” cases above are about variables i > k not mentioned by BDD. If the BDD does
not mention a unprimed variable, this simply means the relation does not depend on that variable in the
starting state, so the mental program also does not have to mention it. On the other hand, not mentioning a
primed variable in the BDD means we must allow the mental program to change that variable arbitrarily.

Theorem 4.5. The translation T always terminates.

Proof. We observe that at each recursive step either the size of the BDD Q or the length of the list L
strictly decreases, while the other size stays the same. O

Theorem 4.6. The translation t, from Definition 4.4 is correct. That is, given a vocabulary V, for any
Q
s,t CV, we have s 0@, iff (sut’) E Q.

Proof sketch. For any BDD Q, let Q* be its unraveling to a tree. Note that we have 7(Q) = 7(Q*). Hence
for the proof we assume wlog. that 8 is a tree and proceed by induction over the tree structure. For all
details, see the appendix.

We now consider the length of the mental programs resulting from the translation. Unfortunately,
given a BDD for a vocabulary V with |[V| = n the output of T will always have at least length &(2"). The
result may be simplified using equivalences suchas p < T;p?=p <+ T and p < L;p?= 17. Buteven
including such simplifications we believe that there is no better translation in the following sense.

Conjecture 4.7. For any translation T from BDDs to mental programs that is correct in the sense of
Theorem 4.6, there exists a BDD B such that T'(B) has a length exponential in the number of nodes of 3.

As an example, take the BDD encoding the relation R = {(s,s) | |s| = [@1 }, i.e. the identity restricted

to the states where exactly half of the vocabulary is true. The BDD encoding R is a |V|-|V| grid. We
can find a mental program encoding this relation using (the proof of) Lemma 3.5, but the size of the
mental program is 2lvi/z. [V|. It is not clear whether there exists a shorter mental program that encodes
R. Essentially the mental program needs to count, and at the same time preserve the valuation. But as
there are no additional variables the only way to count without forgetting is to try all valuations. Thus
we believe that any mental program 7 encoding R must have size exponential in the size of the BDD.

5 Conclusions and Future Work

In this paper, we showed that the symbolic model-checking tasks for EL, PAL and DEL on both knowl-
edge structures and belief structures are all PSPACE-complete. In addition we compared how the same
relations can be encoded in belief structures with BDDs on one hand, and in succinct models with mental
programs (a regular language like syntax) on the other hand. That is, we provided translations from men-
tal programs to BDDs, and back. We have also proven that any such translation from mental programs
to BDDs will lead to an exponential blowup in size, and we conjecture the same for the other direction
from BDDs to mental programs.

An aspect we did not consider here but that is relevant for epistemic planning are multi-pointed
models and actions. Concerning implementations, a PAL model checker using mental programs was im-
plemented in [21]. In parallel to the theoretical work presented here we have improved the performance
of this code and implemented the translations from section 4. We plan to benchmark all methods and
eventually merge them into SMCDEL in the future.
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A Proofs

Lemma 2.10. Given a pointed knowledge structure %, a state s of #, a list of PAL-S5 formulas L =
(0o, ..., 4] and a PAL-SS formula @, we have F'0'% s & @ iff check(.F,L,s, ®) returns true.

Proof. By induction on the input size and case distinction on ¢. We only show the interesting cases for
knowledge and for announcements.

Case ¢ = K;¢;. We have:
Flo-te s Ky iff Vi CV 1 sN0; =tN0; and 1 survives in .Z 0% implies .Z 0% 1 £ @,

k
iff V¢ CV:snO;=tN0;and N\ F-'1 1 (; implies F0-' t E
i=0

Note that, assuming forar CV,sN0O; =N O, f;o FFlo--tica ,t E¢; if and only if stillExists= true
after the execution of the loop in line 9. This is so by using IH as for any i € [1,|L| — 1], |.%| + |lo| +
sl G < | T +Z/;:o |€;|+ |@i| + 1. Line 7 checks whether s O; =N O;. Hence

yﬂo..lk’s = Ki(Pl
iff V¢ CV :line 7 and stillExists is true after loop 9 implies Flobe 1 0
iff Vt CV : line 7 and stillExists is true after loop 9 implies check(.Z [{y ... 4],t, @) # false

Case ¢ = [!y]p;. We have:

Flo-te sk [1y]y iff F0% s & y implies F0-4Y s @
iff check(.%,L,s, y) = true implies check(.%,L+ +[y],s, ¢;) = true,by IH

Note that we make two recursive calls here. We can apply the IH to both because the input size strictly
decreases: |.F |+ Liolll + [w| < | F|+ Lo lb] + Wl + @1 + 1 and |F| + Lo 1G] + [w| + || <
\Z 1+ 2 6]+ [l + | r] + 1.

The check(.%,L,s, y) is evaluated in line 15. If it is false, then check(.Z, [Co, . .., k], s, [! W] Q1) = true
by line 15. Hence, 7% s & [\y]e iff check(.Z, [lo, ..., 41],s, [!w]@r) = true. O

Lemma 2.14. Given a pointed knowledge structure F = (V,0,0;),s CV and a DEL formula ¢, we
have Z s = @ iff checkDELK(.Z,[],s, @) returns true.

Proof. We show the more general claim that for any list L = [(Z0,x0),. .., (Zk,xx)] of events we have
(F,5) @ (Z0,%0) ® ... (Zk,xx) E @ iff checkDELK(.Z, L, s, @) returns true. The proof is by induction
on @, and we omit the easy cases for negation and conjunction.

Case ¢ = p. We have the following equivalences:

Fhob sEp
iff pe st =(F\ Ve U v ) Ut u{p e i | 55" Uxi E 6 _(p)}, by Definition 2.3
iff p e s&' = (551 \ Vi) U{q € Vi _ | checkDELK(.Z,[],s,[x; C V; 16, —(q))},because p € V
iff checkDELK(.%, L, s, p) = true,by definition of checkDELK



16

Note the difference between s* and s& here. s* removes the copy variables and the event state (of which

variables are from the new event vocabulary) while the last part both represent the modified propositions
whose precondition was true in the previous state. However, by assumption p € V, therefore we can
simply remove these two parts.

Case ¢ = K;y. We have the following equivalences:

Flole s Ky
iff for all 7 in the final model /™ Ut' Q{ mal implies /" 1y
itV CVsttEO,f CV', ., CVFe

sUt' E Qi,xf Utl+ F Qaii, ..,x,j Ut,j F Q4 and ¢ survives implies f&"“ék,t Fy
iffViCVsttEO, CVy©,...,.07 CV e

k
sUlEQixf Ul E Q. xf Ul E Qg and \ F-0 1 [T T V)6 implies 0% 1y
i=0

iff checkDELK(.%,L,s,K;y) = true

Case ¢ = [Z,x]y. We have the following equivalences:

ﬁ[‘)"'f",s F 2, xy
iff if F0-% s [x TVT]OT then (F0-% x 2 s Ew
iff if checkDELK(.%,L,s,[x T V']0") = true then check(.#,L+ +[(2",x)],s, ¥) = true,by IH [J

Theorem 4.2. The translation from Def. 4.1 is correct: for any s,t C V, we have s = t iff (sUt") E tr(m).

Proof. By induction on the structure of & and applying Definition 3.2.

T . . .
e s Tt = sUE P'A /\p#qev(q > ¢'), since p €  and other variables remain the same.

L . . .
e s 5t = sUrE-p! A Nprqev(q <> q'), since p ¢ t and other variables remain the same.
Vi
* st = s=tAsFEB = sUt'FBAN,cv(p < p), since B must be true in s =1.

e s Pt e sBrors Lt = sUrEtr(p)orsUL Etr(q) <= sUt' Ftr(p) Vir(q).

T
e §——1

EIuQV:sE'—ntanduzz—n

FuCV:sUu Etr(m) and ulUr' E tr(m)

JuCV:sUd Ftr(m) and /' Ut" E [V = V' V' = V'tr(m,)
uCV:sUdUt"Etr(m)A[V =V V= Vtr(m,)
sUEV (tr(m) AV = VIV = Vtr(m))

sUtE VI = V@V (tr(m) AV = V][V = VY tr(m)))

rreony

e sy e s Drands Lt sUt'Etr(p) and sUt Etr(q) <= sUt' Etr(p)Atr(q) O

Theorem 4.3. For any translation tr' from mental programs to BDDs there exists a mental program T
such that tr' (1) has size exponential in |7|.
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Proof. Take a vocabulary V = {py,...p2,} with this ordering fixed. Consider again the formula 8 :=
(P1APnt1) V.. NV (puAPpin) from page 7. Let w:= B?. Then 7 also has length in &'(n). From Definition
16, tr(w) = B A N\,ev(p <> p'). We show that the BDDs corresponding to this boolean formula has at
least 27 +! many nodes. First, as discussed in [9, p. 681], the BDD that corresponds to the S formula has
at least 2! many nodes.

* ’:‘o

Figure 1: Node p; in $’s BDD. Figure 2: Node p; in B A\ ey (p <+ p')’s BDD.

Now we examine the size of the BDDs that corresponds to B A A ey (p < p'). Since none of the
copy variables p! appear in f3, it will not cause any subtrees to be merged. Instead, as shown in Figure 2,
for each node p; that appears in 's BDD in Figure 1, two more nodes of p/} are added with the solid and
dashed edges encoding the (p; <+ p!) sub-formula in 7. Therefore, the BDD for 7 has at least 2"*! many
nodes. O

Theorem 4.6. The translation t, from Definition 4.4 is correct. That is, given a vocabulary V, for any
Q
s,t CV, we have s @), iff (sut’) E Q.

Proof. For any BDD Q, let Q* be its unraveling to a tree. Note that we have 7(Q) = 7(Q*). Hence for
the proof we assume wlog. that 3 is a tree.

We proceed by induction over the structure of BDDs. In the case when the BDD is a single node
L, the mental program is ?_L, which represents the empty relations. When the BDD is a single node
T, the mental program is ((po <— L) U (po < T));...;((pn < L)U(pn < T)); 2T, which represents the
complete relations. The translation is correct for both of these base cases.

The trickier case is when the BDD has at least three nodes (including T and ). We proceed by an
inner induction on the length of the vocabulary. The base case is when the vocabulary is empty and the
only BDDs that can be constructed are just L and Tnodes. As shown above, the translation is correct for
both cases.

For the induction step we are adding one more variable pg at the beginning of the vocabulary V. We

have the inductive hypothesis that for all #; that can be constructed with the vocabulary V = [py, .., pxl,

T(to,V
wehaveth — sU En.

We prove that the translation remains correct for the extended vocabulary V) := {po} UV by showing
that both 7y under V and 7(zp, V') encode the same relations.

Given the new vocabulary, the unraveled BDDs that can be constructed all have the shape as shown
in Figure 3, where the ¢;s are subtrees which can be seen as the complete trees constructed in the original
vocabulary V. We can construct the corresponding relations in Figure 4. Specifically, after extending the
vocabulary, we make a copy of the states in the original vocabulary V and add pg to each of these copies
to indicate that py is true in these states. The states in which py is false are put on the bottom level in the
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figure while the states in which py is true are on the top level. We construct the corresponding relations
as follows:

1. Construct the relations corresponding to #; in the original vocabulary V on the bottom level.

2. Construct the relations corresponding to #; in V on the bottom level and then shift the source states
of the relations from the bottom level to the corresponding states (i.e. those that differ only by pg.)
on the top level. In Figure 4 these relations are depicted as the dotted top-to-bottom arrows.

3. Construct the relations corresponding to #3 in V on the bottom level and then shift the target states
of the relations from the bottom level to the corresponding states on the top level. In Figure 4 these
relations are depicted as the dotted bottom-to-top arrows.

4. Construct the relations corresponding to #4 in V on the bottom level and then shift both the source
and target states of the relations from the bottom level to the corresponding states on the top level.

Each branch ¢; in Figure 3 corresponds to part of the relation in Figure 4.

OERO
\* \\\
4

Figure 3: The BDD after pg is added. Figure 4: The corresponding Kripke model.

From inductive hypothesis we know that the translations are correct in the original vocabulary, which
means that 7; and #; encode the same relations in the original vocabulary V. Assume 1(¢;,V) = m;,
then (19, V1) =?-po; ((po < L;m) U (po < T5m))U?po; ((po < L;m3)U(po < Tima)) = (2—po; i) U
(?=pos (po <= T)sm) U(?po; (po <— L);m3) U(?po; ma). Similar to the reasoning in the previous part, we
can see that this represents the same relation in Figure 4, e.g. the relations corresponding to 7, go from
bottom to top. Therefore, the BDD #, and the mental program 7(zy,V;) encode the same relation in the
extended vocabulary {po} UV. This concludes the proof that the translation is correct. O
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