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Abstract. In the gossip problem, a group of agents aims to efficiently
share information using one-to-one communication. This often occurs
in decentralised systems, where agents must rely on protocols to effi-
ciently coordinate their communication. Recent work has used epistemic
logic to define gossip protocols, including protocol-dependent knowledge
modalities: agent knowledge assuming common knowledge that all agents
follow said protocol. While axiomatisations exist for various versions of
the gossip problem, none of these include protocol-dependent knowledge.
We show that protocol-dependent knowledge is strictly more expressive
than standard knowledge, and we provide axiomatisations for four logics
of gossip with protocol-dependent knowledge. We show that all four
axiomatisations are sound and complete, as well as decidable.

1 Introduction

The gossip problem, introduced in the 1970’s as the telephone problem [4,20]
addresses how to spread information (secrets) among a group of agents by
sequential pairwise communication, often called telephone calls. The goal is for
all agents to know all secrets. We assume that each agent holds a single secret
and that when calling each other, both agents exchange all the secrets they
know, but no other information. There are many variations of the gossip problem:
one-directional exchange, when only one agent in a call informs the other but not
vice versa; multiple calls made in parallel; restrictions on the network, limiting
what agents you can reach; (a)synchronicity determining whether agents are
aware of a global clock when making calls; and more — see [16] for a survey.

Initially, research focused on finding optimal sequences of calls to achieve
the goal that all agents know all secrets. Such optimal sequences require a
central scheduler to plan calls. Later publications shifted to distributed gossip [18].
In the absence of a central scheduler, agents must rely on some protocol to
coordinate their calls. Often, they rely on making calls at random. More recent
developments focus on epistemic gossip protocols which specify pre-conditions
that an agent must know are true before making a call [3,1]. There exist many
such distributed epistemic protocols [1,8,9]. Other aspects of gossip protocols
may also be epistemic, such as the termination goal (when the goal is not merely
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that all secrets are known by all agents, but that they also know this) [10,11], or
the messages being sent [7,17]. Another variation is to allow faulty messages [5].

To analyse how the information develops over the course of a protocol’s
execution we can use a dynamic epistemic logic with knowledge modalities
for individual agents and a dynamic modality for calls. Various such logics
have been axiomatised [14]. In these settings and even when all agents follow
a given protocol, they do not assume that the other agents follow the same
protocol. That is, their knowledge is not based on other agents also selecting
calls on the same ground as themselves. In [12] the authors propose so-called
protocol-dependent knowledge (see also [10,15]), which are epistemic modalities
formalizing what an agent knows given that it is common knowledge that all
agents follow some protocol. Strengthening gossip protocols with these modalities
makes some protocols more successful [12]. However, the corresponding logics
with protocol-dependent knowledge modalities have not yet been axiomatised.

We show that protocol-dependent knowledge is strictly more expressive than
standard knowledge and provide axiomatisations for four logics of gossip with
protocol-dependent knowledge modalities. To axiomatise dynamic modalities
for calls, we use the technique of reduction axioms by which a formula with
dynamic modalities is provably equivalent to one without. We show that all four
axiomatisations are sound and complete, and that all four logics are decidable.

We proceed as follows. We first recall the definitions of gossip and protocol-
dependent knowledge in Section 2 before proving our expressivity results in
Section 3. We then introduce our proof systems. In Section 4 we present the logic
of initial models in a call-free setting, in Section 5 we define call reductions, and
in Section 6 the logic of gossip models including calls. In the latter we also show
that these proof systems are decidable. Section 7 concludes the article.

2 Definitions

We assume a finite set of agents a, b, . . . ∈ A. Each agent knows a corresponding
secret, also denoted a, b, . . . and S is the set of all secrets. We only express the
secret distribution among the agents, not the content of the secrets.

A call is a pair of agents a ̸= b ∈ A. A call sequence σ ∈ Σ is a list of calls. For
n agents there are n · (n− 1) different calls and all calls can always be executed.
We write ab as shorthand for the call (a, b) and use a period to concatenate calls
into a sequence, e.g. ab.cd.

Gossip has been studied under various settings [14,16]. We consider syn-
chronous gossip with symmetric calls, i.e. agents always know how many calls
took place but not necessarily which, and the caller and callee both share all
secrets they know. Agents inspect-then-merge the secrets the other agent knows,
meaning they first find out what the other agent knew before the call. they share
no higher-order epistemic information or other information in a call. Agents
form a total network, meaning they can always call anybody else, and calls are
one-to-one.
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We define the syntax with the following two mutually recursive definitions.

Definition 1 (Language). Let a, b ∈ A be agents and P ∈ P a protocol. We
define the language LP as

φ ::= Sab | ¬φ | (φ ∧ φ) | KP
a φ | [ab]φ.

The syntax extends standard epistemic logic. The atom Sab means that agent
a knows the secret of agent b. The protocol-dependent knowledge modality KP

a φ
says that assuming it is common knowledge that protocol P is followed, agent a
knows that φ. The dynamic modality [ab]φ means that φ holds after call ab.

Protocols are essentially (distributed) algorithms that select calls to execute
until some goal is achieved, usually that all agents know all secrets. For the
purpose of this article it suffices to define a protocol by its protocol conditions,
which specifies for each call when it may be executed.

Definition 2 (Protocols). A gossip protocol P is a list of n · (n− 1) protocol
conditions Pab ∈ LP for agents a ̸= b ∈ A. Let P be the set of all protocols.

Protocols cannot reference themselves, either directly or indirectly. This means
that Pab may not contain a modality KQ such that Q = P or Q references P .

The operators ∨, →, ⊤, and ⊥ are defined as abbreviations in the usual way.
We also define the epistemic dual of KP

a by K̂P
a := ¬KP

a ¬. While LP does not
contain the standard knowledge operator K, we will use it as abbreviation for
KANY, knowledge assuming the trivial protocol ANY defined in Example 3.

For any agent a and set of secrets R ⊆ S we furthermore define the following
abbreviation to describe that a only knows the secrets in R.

OaR :=
∧

b∈R Sab ∧
∧

b/∈R ¬Sab “a only knows the secrets in R”

We also define variations of this language. Firstly we define the basic language
of gossip L by replacing KP with the standard knowledge operator K.

The static fragments LP
− and L− of these languages omit the dynamic modality

[ab]. As this modality represents a call in the setting of gossip, we also use the
term call-free.

Agents can coordinate their calls by means of protocols. A protocol stipulates
whether a call is permitted at a certain point, characterised by a protocol condition.
There are various well-known gossip protocols, such as Learn New Secrets (LNS)
where agents are only allowed to make a call to an agent whose secret they do
not yet know. We also use the trivial protocol Any Call (ANY).

Example 3 (Protocols LNS and ANY). The protocols LNS and ANY are given by
the following protocol conditions LNSab := ¬Sab and ANYab := ⊤, respectively.

We view the protocol conditions Pab as subformulas of the KP modality,
which gives rise to the following definition of modal degree.
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Definition 4 (Modal Degree). The modal degree d(φ) of a formula φ ∈ LP

is defined recursively by

d(Sab) := 0,
d(¬φ) := d(φ),
d(φ ∧ ψ) := max{d(φ), d(ψ)},
d(KP

a φ) := 1 + max{d(φ), d(P )},
d([ab]φ) := d(φ),

where d(P ) := max{d(Pab) | a ̸= b ∈ A} is the degree of protocol P .

We now define gossip models in two steps: an initial model represents the situation
before any calls have happened and is then lifted to a gossip model that includes
calls. Initial models with n agents are essentially S5n Kripke models.

The following definition by [14] models arbitrary initial settings of gossip
without protocol-dependent knowledge. These allow any secret distribution and
knowledge thereof, as long as agents at least know their own secret and are aware
which secrets they know. Protocols only effectively change the semantics after calls
have taken place. We can therefore use the same definition for protocol-dependent
knowledge too.

Definition 5 (Initial Models). An initial model is a triple I = ⟨W0, R0, V0⟩
where W0 is a set of worlds, R0 : A → 2W0×W0 is an equivalence relation for
each agent, and V0 : A × W0 → 2S is a function mapping agent-world pairs to
sets of secrets, such that (i) a ∈ V0(a,w) for all w ∈ W , and (ii) if we have
(w1, w2) ∈ R0(a) then V0(a,w1) = V0(a,w2).

We can lift any initial model to a gossip model by inducing calls [14]. As calls
are always possible, this creates for each world in the initial model an n · (n− 1)
branching tree. The resulting models are therefore forests.

Definition 6 (Gossip States). Given an initial model I = ⟨W0, R0, V0⟩, a
gossip state is a pair (w, σ) where w ∈ W0 and σ is a call sequence. The set of
gossip states induced from I is W (I) := W0 ×Σ.

Definition 7 (Valuation). Given an initial model I = ⟨W0, R0, V0⟩ and some
gossip state (w, σ) ∈ W (I), we denote the set of secrets known by agent a, by
Va(w, σ). We define V recursively as follows.

Va(w, ϵ) = V0(a,w) Empty sequence
Va(w, σ.bc) = Vb(w, σ) ∪ Vc(w, σ) iff a ∈ {b, c}
Va(w, σ.bc) = Va(w, σ) iff a /∈ {b, c}

The semantics on gossip models are now defined as follows, with Definitions 8
to 10 being mutually recursive. The effects of protocols emerge in Definition 8 of
the epistemic accessibility relation. While calls are always possible, only those
calls that are P -permitted are considered by agent a under the relation ∼P

a . The
epistemic relation ∼a for standard gossip as in [14, Definition 3.5] instantiated
for synchronous, bi-directional calls with inspect-then-merge can be retrieved by
omitting the protocol conditions, marked with (∗).
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Definition 8 (Epistemic Relation). Given an initial model I = ⟨W0, R0, V0⟩,
we lift the initial relation R0 for each P ∈ P and agent a ∈ A to ∼P

a ⊆ W (I)×W (I)
such that:

(wi, ϵ) ∼P
a (wj , ϵ) iff (wi, wj) ∈ R0(a);

(wi, σ.ab) ∼P
a (wj , τ.ab) iff (wi, σ) ∼P

a (wj , τ)
and Vb(wi, σ) = Vb(wj , τ)
and (wi, σ) |= Pab and (wj , τ) |= Pab; (∗)

(wi, σ.ba) ∼P
a (wj , τ.ba) iff (wi, σ) ∼P

a (wj , τ)
and Vb(wi, σ) = Vb(wj , τ)
and (wi, σ) |= Pba and (wj , τ) |= Pba; (∗)

(wi, σ.bc) ∼P
a (wj , τ.de) iff (wi, σ) ∼P

a (wj , τ)
and a /∈ {b, c, d, e}
and (wi, σ) |= Pbc and (wj , τ) |= Pde. (∗)

Definition 9 (Gossip Models). For an initial model I, we define the (induced)
gossip model M(I) := ⟨W (I),∼, V ⟩ with W (I), ∼, and V from Definitions 6
to 8. When the initial model is clear from context, we omit it and write M .

Definition 10 (Semantics). Let φ,ψ ∈ LP. We define the relation |= between
pointed gossip models and formulas as follows.

M, (w, σ) |= Sab ⇐⇒ b ∈ Va(w, σ)
M, (w, σ) |= ¬φ ⇐⇒ M, (w, σ) |̸= φ
M, (w, σ) |= φ ∧ ψ ⇐⇒ M, (w, σ) |= ψ and M, (w, σ) |= ψ
M, (w, σ) |= KP

a φ ⇐⇒ M, (w, σ′) |= φ for all (w, σ′) s.t. (w, σ) ∼P
a (w, σ′)

M, (w, σ) |= [ab]φ ⇐⇒ M, (w, σ.ab) |= φ

When M and w are clear from context, we omit them and write σ |= φ.
We also define semantics for the call-free language on initial models such that

I, w |=I φ iff M(I), (w, ϵ) |= φ for all φ ∈ LP
−.

Effectively, the epistemic relation for protocol P is restricted to call sequences
that are P -permitted.

Definition 11 (P -Permitted Calls). Given a protocol P , a call ab is P -
permitted at state M, (w, σ) if its protocol condition Pab holds: M, (w, σ) |= Pab.
A call sequence σ is P -permitted if each call is P -permitted. A call or sequence is
P -illegal if it is not P -permitted. We omit P if the protocol is clear from context.

Protocol-dependent knowledge only differs from standard knowledge after
calls happen. In initial models no calls have happened yet, hence knowledge does
not yet depend on which protocol an agent assumes.

Lemma 12. Let P and Q be any two protocols and let a be any agent. Then for
any initial model I and world w ∈ W (I) we have I, w |=I K

P
a φ iff I, w |=I K

Q
a φ.

Proof. By the semantics, in particular note that the ϵ clause of Definition 8 does
not depend on the protocol but only on R0. ⊓⊔
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While initial models are S5, protocol-dependent gossip models are not: the
epistemic relation for a protocol P excludes any states with P -illegal call sequences,
breaking reflexivity. They are instead partial equivalence relations. As a side-effect
of these semantics, the P -dependent knowledge-base in P -illegal states becomes
inconsistent, meaning that for any agent a the state satisfies KP

a ⊥. This property
is known as the global alarm [12].

We can describe any distribution of secrets or knowledge thereof with an initial
model. However, the classic gossip problem assumes a specific initial setting:
in the root model all agents know only their own secret and this is common
knowledge among the agents.

Definition 13 (Root Model). The root model IR is the initial model with
W0 = {wR}, and R0(a) = {(wR, wR)} and V0(a,wR) = {a} for all agents a. We
write I for the singleton class of IR.

We call the gossip model induced from IR the tree model, as it contains
a single tree rooted in wR. While other single-tree models exist, we use the
name exclusively for this model. It is semantically equivalent to models used in
literature that assume the classical setting [2,11,12,13].

Definition 14 (Tree Model). The tree model MT := M(IR) is the gossip
model induced from the root model. We write T for the singleton class of MT .

We have now defined four classes of models: G, I, R and T . We visualise
the relation between them in Figure 1 below. The main class is G. It consists of
the induced gossip models of all initial models in I, i.e. the execution trees with
an initial model as their root. One particular model is the tree model MT ∈ T
induced by the root model IR ∈ R.

G I R

T

Fig. 1. The classes I, G, R, and T .

3 Expressivity of Protocol-Dependent Knowledge

We now show that LP is strictly more expressive than L. To this end, we first
show that LP can express the length of call sequences using protocol-dependent
knowledge modalities. We do so by recursively defining protocols that depend on
the violation of the previous.
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Definition 15 (Counting Protocols). For all natural numbers k ≥ 0 and all
agents a ̸= b, and an arbitrary agent u we define P k

ab recursively as follows.

P 0
ab := ⊥ “Allow no calls”

P k+1
ab := K̂P k

u ⊤ “The previous protocol has not been violated”

These protocols leverage the global alarm property. A sequence violates
protocol Pn iff it exceeds length n. Recall however that a protocol can only be
violated by an illegal call: the lack of a call can never cause violation. A counting
protocol therefore provides an upper bound, but not a lower bound.

Lemma 16. For all agents u, call sequences σ and all k ≥ 0 we have

M, (w, σ) |= K̂P k

u ⊤ if and only if |σ| ≤ k.

Proof. Let agent u and call sequence σ be arbitrary. We use induction on k.
Base case. Suppose k = 0.

(=⇒) Suppose M, (w, σ) |= K̂P 0

u ⊤. Hence σ has not violated the protocol P 0.
However, P 0

ab = ⊥ for all calls ab, so no calls are P 0-permitted. Therefore we
find that σ = ϵ and conclude that |σ| ≤ 0.

(⇐=) Suppose |σ| ≤ 0. Then σ = ϵ. The empty call sequence cannot violate
any protocol, also not P 0. Hence M, (w, σ) |= ¬KP 0

u ⊥, i.e. M, (w, σ) |= K̂P 0

u ⊤.
Induction Hypothesis. Let k be arbitrary and suppose we have M, (w, σ) |=
K̂P k

u ⊤ if and only if |σ| ≤ k.
Induction Step. Suppose the induction hypothesis holds for k. We show it holds
for k+ 1. Let σ be an arbitrary call sequence such that |σ| = k+ 1 and write it as
σ = τ.ab. Using the semantics of [ab] and K̂u we get the following equivalences:

M, (w, τ.ab) |= K̂P k+1

u ⊤ ⇐⇒ M, (w, τ) |= [ab]K̂P k+1

u ⊤
⇐⇒ M, (w, τ) |= ¬[ab]KP k+1

u ⊥

We now distinguish three cases whether agent u is one of the agents a and b.

Suppose u /∈ {a, b}. We get the following equivalences. The steps Pri and Fnc
follow from the soundness of the axioms with the same name, that we will show
below in Lemma 24. For the step at (∗) we use the definition of P k+1

ab in both
directions. Observe for the backwards direction that P k is not violated at τ , so
neither is P k+1. This means we have τ ∼P k+1

u τ which is sufficient to obtain
τ |= K̂P k+1

u (P k+1
ab ∧ [ab]⊤). Hence τ satisfies the disjunct for de = ab.

τ |= ¬[ab]KP k+1

u ⊥
⇐⇒ τ ̸|= P k+1

ab →
∧

d,e ̸=u K
P k+1

u (P k+1
de → [de]⊥) (Pri)

⇐⇒ τ |= P k+1
ab ∧

∨
d,e ̸=u ¬(KP k+1

u (P k+1
de → [de]⊥)) (De Morgan)

⇐⇒ τ |= P k+1
ab ∧

∨
d,e ̸=u K̂

P k+1

u (P k+1
de ∧ ¬[de]⊥) (Sem. K̂u)

⇐⇒ τ |= P k+1
ab ∧

∨
d,e̸=u K̂

P k+1

u (P k+1
de ∧ [de]⊤) (Fnc)

⇐⇒ τ |= K̂P k

u ⊤ (∗)



8 Hans van Ditmarsch, Malvin Gattinger, Wouter J. Smit

Suppose u = a. We get the following equivalences.The step Obs1 follows
from Lemma 24 below. For the backwards direction of the step at (†), ob-
serve that there is precisely one set Q ⊆ S such that ObQ. For all other sets
T ̸= Q the conjunct is satisfied with ¬ObT . The conjunct for R = Q is satisfied
by the knowledge operator: we use again the reflexive relation τ ∼P k+1

τ to
obtain τ |= K̂P k+1

u (P k+1
ab ∧ObQ ∧ [ab]⊤).

τ |= ¬[ab]KP k+1

u ⊥
⇐⇒ τ ̸|= Pab →

∨
R⊆S(ObR ∧KP

u (Pab → (ObR → [ab]⊥))) (Obs1)
⇐⇒ τ |= Pab ∧

∧
R⊆S ¬ObR ∨ ¬KP

u (Pab → (ObR → [ab]⊥)) (De Morgan)
⇐⇒ τ |= Pab ∧

∧
R⊆S ¬ObR ∨ K̂P

u (Pab ∧ObR ∧ ¬[ab]⊥) (Sem. K̂u)
⇐⇒ τ |= Pab ∧

∧
R⊆S ¬ObR ∨ K̂P

u (Pab ∧ObR ∧ [ab]⊤) (Fnc)
⇐⇒ τ |= K̂P k

u ⊤ (†)

Suppose u = b. We repeat the steps for u = a and instead apply Obs2.

Hence τ.ab |= K̂P k+1

u ⊤ ⇐⇒ τ |= K̂P k

u ⊤. We finish by applying the induction
hypothesis to find τ |= K̂P k

u ⊤ ⇐⇒ |τ | ≤ k ⇐⇒ |σ| ≤ k + 1. ⊓⊔

We negate the global alarm to invert the bound and define counting formulas.

Definition 17 (Counting Formulas). We define φ0 := K̂P 0

u ⊤ and for every
other natural number k ≥ 1, let φk := K̂P k

u ⊤ ∧KP k−1

u ⊥.

Lemma 18. For every call sequence σ and all k ∈ N we have σ |= φk iff |σ| = k.

Proof. Immediate by Lemma 16, as KP k−1

u ⊥ is the negation of K̂P k−1

u ⊤. ⊓⊔

In order to show that the standard language of gossip L cannot express the
length of call sequences, we give a standard definition of bisimulation. We can
apply this definition to protocol-dependent gossip models as ∼ is equivalent to
∼ANY. Lemma 20 can be shown in the usual way [6, Theorem 2.20].

Definition 19 (Bisimulation). Let M = ⟨W,∼, V ⟩ and M ′ = ⟨W ′,∼′, V ′⟩ be
gossip models. Two states are bisimilar, written M, s ↔ M ′, s′, if a bisimulation
Z exists with sZs′. A relation Z ⊆ W ×W ′ is a bisimulation if and only if for
all gossip states s, s′ such that sZs′ we have:

1. (Atoms) For every agent a we have Va(s) = V ′
a(s′);

2. (Forth) For each agent a, if s ∼a t then there is a t′ ∈ W ′ such that s′ ∼a t
′

and tZt′;
3. (Back) For each agent a, if s′ ∼a t

′ then there is a t ∈ W such that s ∼a t
and tZt′.

Lemma 20. If two states are bisimilar, they satisfy the same formulas in L.

Theorem 21. LP is strictly more expressive than L.
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Proof. We show that there exist two states that satisfy the same formulas in L
but that can be distinguished by a formula in LP.

Let IR be the initial root model for two agents a, b and MT the gossip model
induced from it. Consider call sequences σ = ab and τ = ba.ab.

We show that MT , (wR, σ) ↔ MT , (wR, τ). Let Z be an equivalence relation
containing two equivalence classes: one containing only the empty sequence
(wR, ϵ) and one containing the states for all other call sequences. By definition
(wR, σ)Z(wR, τ) and we claim that Z is a bisimulation.

Observe that all atoms are satisfied after the first call, whether it is ab or ba.
Next, both agents can distinguish each point in the model: they are involved in
all calls. The epistemic relations of both agents contain only reflexive relations.

1. (Atoms) For all reflexive relations in Z, Atoms holds trivially. For all other
(wR, σ

′)Z(wR, τ
′), observe that σ′ and τ ′ must be non-empty sequences, as ϵ

only occurs reflexively in Z. All secrets are already shared, so Atoms holds.
2. (Forth/Back) For each agent, ∼ANY contains precisely one reflexive relation

for each call sequence. Hence Forth and Back are satisfied.

Hence Z is a bisimulation. By Lemma 20 then (wR, σ) and (wR, τ) agree on all
φ ∈ L. However, by Lemma 18 we find σ |= φ1 and τ |̸= φ1 and φ1 ∈ LP. ⊓⊔

4 The Logic of Initial Models

We now provide call-free axiomatisations for the class of initial models I and the
singleton class R of the root model IR. The logic for both is essentially S5 plus
axioms about agents knowing (only) their own secrets. The PI axiom ensures
protocol invariance, which is required because protocol-dependent knowledge can
only differ from standard knowledge after calls have happened.

Definition 22. The proof system ⊢R for the call-free language LP
− is defined as

shown in Table 1. The system ⊢I is obtained by omitting the Only axiom.

Theorem 23. The proof system ⊢I is sound and complete for the class of all
initial models I: for all φ ∈ LP

− we have |=I φ iff ⊢I φ. The system ⊢R is sound
and complete for the root model IR: for all φ ∈ LP

− we have |=R φ iff ⊢R φ.

Proof. Soundness follows directly from the semantics. Completeness can be
shown using standard methods by building a canonical model [6, Section 4.2]. In
particular we can define the canonical relation R0(a) over maximally consistent
sets as usual using KANY. The PI axiom ensures that in any maximally consistent
set KP and KQ for any two protocols P and Q agree with each other, matching
Lemma 12 and therefore the semantics. ⊓⊔
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Table 1. Rules and axioms of ⊢R. Omitting Only produces ⊢I .

Prop propositional tautologies K KP
a (φ → ψ) → (KP

a φ → KP
a ψ)

MP ⊢ φ,⊢ φ → ψ imply ⊢ ψ T KP
a φ → φ

Sub ⊢ φ ↔ ψ implies ⊢ χ ↔ χ[φ/ψ] 4 KP
a φ → KP

a K
P
a φ

Own Saa 5 ¬KP
a φ → KP

a ¬KP
a φ

Only Oaa Nec ⊢ φ implies ⊢ KP
a φ

PFi Sab → KP
a Sab

NPi ¬Sab → KP
a ¬Sab PI KPφ → KQφ

5 Call Reductions

While in Section 3 we have seen that LP is more expressive than L, we now show
that the protocol-dependent language still shares a feature with the standard
language, namely that the call operator [ab] can be eliminated. We will use
the established idea of reduction axioms to translate any formula to a call-free
formula using the validities shown in Table 2. These validities originate from [14],
and only the final three are adapted to protocol-dependent knowledge.

However, we will not actually stipulate these formulas as axioms for the proof
systems ⊢G and ⊢T . We only use them as rewrite rules and rely on their semantic
validity to prove the soundness and completeness of ⊢G and ⊢T .

Table 2. Call Reduction Validities on Gossip Models.

Call Basics Call Effects

Con [ab](φ ∧ ψ) ↔ ([ab]φ ∧ [ab]ψ) Eff [ab]Scd ↔ (Sad ∨ Sbd) c ∈ {a, b}
Fnc [ab]¬φ ↔ ¬[ab]φ Ext [ab]Scd ↔ Scd c /∈ {a, b}

Calls and Protocol-Dependent Knowledge

Obs1 [ab]KP
a φ ↔ (Pab →

∨
R⊆S(ObR ∧KP

a (Pab → (ObR → [ab]φ))))
Obs2 [ab]KP

b φ ↔ (Pab →
∨

R⊆S(OaR ∧KP
b (Pab → (OaR → [ab]φ))))

Pri [ab]KP
c φ ↔ (Pab →

∧
d,e̸=a

KP
c (Pde → [de]φ)) c /∈ {a, b}

Lemma 24. All axioms in Table 2 are valid on the class of gossip models G.

Proof. The Call Basics are valid because calls are a deterministic action that can
always be executed. The Call Effects are valid as they are equal to Definition 7.

To show Obs1, let (w, σ) be an arbitrary state in some model M and let
φ ∈ LP be arbitrary. We have the following chains of equivalences. Recall that
Vb(w, σ) is the set of secrets that agent b knows at state (w, σ). At step (∗) we
use a disjunct to enumerate all possible sets of secrets Vb(w, σ) that agent b might
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know. There is precisely one set Vb(w, σ) = R ⊆ S such that ObR holds.

(w, σ) |= [ab]KP
a φ

⇐⇒ (w, σ.ab) |= KP
a φ (Sem. [ab])

⇐⇒ ∀(w′, τ.de) s.t. (w, σ.ab) ∼P
a (w′, τ.de) : (w′, τ.de) |= φ (Sem. KP

a )
⇐⇒ ∀(w′, τ) s.t. (w, σ.ab) ∼P

a (w′, τ.ab) : (w′, τ.ab) |= φ (Def. ∼P
a )

⇐⇒ ∀(w′, τ) s.t. (w, σ) ∼P
a (w′, τ) : (Def. ∼P

a )
if (w, σ) |= Pab and (w′, τ) |= Pab and Vb(w, σ) = Vb(w′, τ)
then (w′, τ.ab) |= φ

⇐⇒ ∀(w′, τ) s.t. (w, σ) ∼P
a (w′, τ) : (Semantics)

If (w, σ) |= Pab then (w′, τ) |= Pab → (ObVb(w, σ) → [ab]φ)
⇐⇒ (w, σ) |= Pab → KP

a (Pab → (ObVb(w, σ) → [ab]φ)) (Sem. KP
a )

⇐⇒ (w, σ) |= Pab →
∨

R⊆S(ObR ∧KP
a (Pab → (ObR → [ab]φ))) (∗)

The proof for Obs2 is analogous to Obs1. For Pri we have the following chain
of equivalences.

(w, σ) |= [ab]KP
c φ

⇐⇒ (w, σ.ab) |= KP
c φ (Sem. [ab])

⇐⇒ ∀(w′, τ.de) s.t. (w, σ.ab) ∼P
c (w′, τ.de) and c ̸= d, e : (Sem. KP

c )
(w′, τ.de) |= φ

⇐⇒ ∀d, e ̸= c : ∀(w′, τ) s.t. (w, σ) ∼P
c (w′, τ) : (Def. ∼P

c )
if (w, σ) |= Pab and τ |= Pde then (w′, τ.de) |= φ

⇐⇒ ∀d, e ̸= c : ∀(w′, τ ′) s.t. (w, σ) ∼P
c (w′, τ) : (Semantics)

if (w, σ) |= Pab then (w′, τ) |= Pde → [de]φ
⇐⇒ If (w, σ) |= Pab then ∀d, e ̸= c : (w, σ) |= KP

c (Pde → [de]φ) (Sem. KP
c )

⇐⇒ (w, σ) |= Pab →
∧

d,e̸=c K
P
c (Pde → [de]φ) ⊓⊔

Given the validity of the call reductions, we now define and prove the following.

Definition 25 (Call Reduction). For any formula φ ∈ LP, let cr(φ) ∈ LP
−

denote the formula obtained by rewriting φ using the validities shown in Table 2
from left to right.

Note that cr(·) is well-defined: the rewriting terminates because after each
step the subformula under the call is a strict subformula of the previous formula.

Lemma 26. For every formula φ ∈ LP we have that |=G φ ↔ cr(φ).

Proof. By induction on the structure of the formula, using Lemma 24. ⊓⊔

Corollary 27. All axioms in Table 2 are valid on the class of the tree model T
and for every formula φ ∈ LP we have that |=T φ ↔ cr(φ).

Proof. Immediate from T ⊆ G and Lemmas 24 and 26. ⊓⊔

Definition 25 also guarantees that rewriting never increases the modal degree.

Lemma 28. Let φ ∈ LP. Its call reduction ψ ∈ LP
− has degree d(ψ) ≤ d(φ).
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Proof. It suffices to show that d(cr([ab]χ)) ≤ d([ab]χ). The proof is by induction
on χ. We explicitly show the induction step for χ = KP

c χ
′ with c = a.

Induction Hypothesis. Let χ ∈ LP be arbitrary. For each strict subformula χ′

of χ we have d(cr(χ′)) ≤ d(χ′).
Induction Step. Suppose χ = KP

a χ
′. Thus φ = [ab]KP

a χ
′. Let n = d(φ).

We have cr(χ) = (cr(Pab) →
∨

R⊆S(ObR ∧KP
a (cr(Pab) → (ObR → cr(χ′)))))

by Definition 25. By Definition 4, each of the strict subformulas of χ has a degree
at most n−1. By the induction hypothesis on χ′ we have thus d(cr(χ′)) ≤ d(χ′) <
d(χ) = n and as Pab is too a strict subformula of χ we have d(cr(Pab)) ≤ d(Pab) <
d(χ) = n. Compute the degree of cr(χ) to conclude that d(cr(χ)) ≤ n. ⊓⊔

6 The Logic of Gossip Models

We cannot extend the axiomatisation ⊢I and standard canonical model construc-
tion to G because PI no longer holds after calls have been made. However, we
can still define provability in G in terms of I, in a way that is similar to the Tree
Rule in [14].

First, observe that it follows directly from the semantics that for any pointed
gossip model and formula φ ∈ LP we have M, (w, σ) |= φ iff M, (w, ϵ) |= [σ]φ.
We can therefore check the truth of some formula anywhere in the model already
in the root state. Furthermore we can use Definition 25 to find the call reduction
of [σ]φ. As the root states are semantically equivalent to their counterpart in the
initial model, we can then use ⊢I to determine validity of [σ]φ in the roots of the
gossip models, and subsequently conclude that φ always holds after sequence σ.

To find out whether φ holds after every call sequence and therefore is a
validity, we only need to repeat this process for the other call sequences. However,
there are infinitely many. Fortunately, we can bound the number of call sequences
that we must check by showing that the number of n-bisimilarity classes is finite.

For this we now define n-bisimulation for protocol-dependent knowledge.
Lemma 31 is a standard result about n-bisimulation and can be shown in the
usual way, so we omit the proof [6, Proposition 2.31].

Definition 29 (n-bisimulation for Protocol-Dependent Knowledge). Let
n ∈ N, and M = ⟨W,∼, V ⟩ and M ′ = ⟨W ′,∼′, V ′⟩ be protocol-dependent gossip
models. Two states s ∈ W and s′ ∈ W ′ are n-bisimilar, denoted M, s ↔n M ′, s′,
if and only if the following conditions hold.

1. (Atoms) For every agent a we have Va(s) = V ′
a(s′).

Additionally if n > 0 we have for each a, and for all P ∈ P with d(P ) < n an
instance of the following two conditions.

2. (Forth) For every t ∈ W we have: if s ∼P
a t then there is a t′ ∈ W ′ such

that s′ ∼′P
a t′ and M, t ↔n−1 M

′, t′.
3. (Back) For every t′ ∈ W we have: if s′ ∼P ′

a t′ then there is a t ∈ W such
that s ∼P

a t and M, t ↔n−1 M
′, t′.
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Definition 30. Two states are n-equivalent, written M, (w, σ) ≡n M
′, (w′, σ′),

iff for all φ ∈ LP with d(φ) ≤ n we have M, (w, σ) |= φ ⇐⇒ M ′, (w′, σ′) |= φ.

Lemma 31. For any two states M, (w, σ) and M ′, (w′, σ′) we have

M, (w, σ) ↔n M ′, (w′, σ′) if and only if M, (w, σ) ≡n M
′, (w′, σ′).

Lemma 32. The number of ↔n-equivalence classes f(n) is finite.

Proof. First we claim that there are only finitely many semantically different
modal formulas of modal degree up to n. This can be shown by induction on
n [6, Proposition 2.29]. For the induction step from n to n+ 1 with KP

a φ, note
that the protocol P must be defined by formulas of degree n or lower. By the
induction hypothesis there are only finitely many semantically different formulas,
and thus also only finitely many semantically different protocols. Hence for each
degree we have only finitely many semantically different modalities. The rest is
standard.

Now towards a contradiction, suppose f(n) is infinite. Then there exist states
Mk, (wk, σk) for k ∈ N that are all not n-bisimilar to each other. By Lemma 31
then there are formulas φi,j that are each true at the state with index i and false
at the state with index j. Moreover, infinitely many of these formulas must be
semantically different, contradicting the claim. ⊓⊔

We now get the following result, which states that anything true after some
sequence of calls is also true after some sequence of calls no longer than the
number of n-bisimilarity classes.

Lemma 33. Let φ ∈ LP and n = d(φ). For any state (w, σ.τ) in any gossip model
M that satisfies φ there is a sequence τ ′ such that |τ ′| ≤ f(n) and M, (w, σ.τ ′) |=
φ, where f(n) is the number of n-bisimilarity classes.

Proof. Let M, (w, σ.τ) and φ be arbitrary such that M, (w, σ.τ) |= φ and |τ | >
f(n). Then τ must have two initial fragments τ1 ≠ τ2 such that (w, τ1) ↔n (w, τ2).
W.l.o.g. let |τ1| < |τ2| and τ = τ2.τ3. Then M, (w, σ.τ2) |= [τ3]φ. By definition
d([τ3]φ) = n, so by n-bisimilarity and Lemma 31 also M, (w, σ.τ1) |= [τ3]φ and
M, (w, σ.τ1.τ3) |= φ. Note that |τ1.τ3| < |τ | and we can repeat until done. ⊓⊔

Definition 34 (Proof System ⊢G). Let φ ∈ LP and n = d(φ). We define ⊢G
as follows, where f(n) is the number of n-bisimilarity classes.

⊢G φ ⇐⇒ ∀σ : |σ| ≤ f(n) we have ⊢I cr([σ]φ)

Theorem 35 (Soundness and Completeness for G). For any φ ∈ LP, we
have |=G φ iff ⊢G φ.

Proof. (Soundness) By contraposition, suppose ̸|=G φ. We show that ̸⊢G φ.
There is some model M ∈ G and some state (w, σ) such that M, (w, σ) |= ¬φ,

i.e. we have M, (w, ϵ) |= ¬[σ]φ. By Lemma 33 we can assume that |σ| ≤ f(d(φ))
and by Lemma 26 we have the call reduction ψσ := cr([σ]φ).
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Now suppose ⊢G φ, in order to reach a contradiction. Then by Definition 34
and from |σ| ≤ f(d(φ)) we get ⊢I ψσ. By soundness of ⊢I we then have |=I ψσ

and in particular M, (w, ϵ) |= ψσ. By validity of the call reductions we get
M, (w, ϵ) |= [σ]φ. This contradicts M, (w, ϵ) |= ¬[σ]φ, so we must have ̸⊢G φ.

(Completeness) By contraposition, suppose ̸⊢G φ. We show that ̸|=G φ.
By Definition 34 there must be a call sequence σ such that ̸⊢I cr([σ]φ).

By completeness of ⊢I we have some model and world such that M, (w, ϵ) ̸|=
cr([σ]φ). By validity of the call reductions we get M, (w, ϵ) ̸|= [σ]φ. This implies
M, (w, σ) ̸|= φ and thus ̸|=G φ. ⊓⊔

We could use ⊢I to define ⊢G , because there is a bijective relation between
the two classes: each model in G is induced by an initial model in I and vice
versa. Now recall that T is the singleton class of the tree model induced by the
root model in R. We therefore define ⊢T analogously to ⊢G , but using ⊢R instead
of ⊢I . The proof of Theorem 37 is analogous to Theorem 35.

Definition 36 (Proof System ⊢T ). Let φ ∈ LP and n = d(φ). We define ⊢T
as follows, where f(n) is the number of n-bisimilarity classes.

⊢T φ ⇐⇒ ∀σ : |σ| ≤ f(n) we have ⊢R cr([σ]φ)

Theorem 37 (Soundness and Completeness for T ). For any φ ∈ LP, we
have |=T φ iff ⊢T φ.

The definitions of both ⊢G and ⊢T bound the number of times they invoke ⊢I
and ⊢R by the number of n-bisimilarity classes. As this is finite, these systems
too are decidable.

Theorem 38. Proof systems ⊢G and ⊢T are decidable.

Proof. Immediate by Lemma 32. ⊓⊔

7 Conclusion

We have shown that the protocol-dependent knowledge modality is more expres-
sive than the standard epistemic knowledge modality. We have defined four logics
for gossip using protocol-dependent knowledge modalities and provided sound
and complete proof systems that are decidable. In particular we have provided a
proof system for T , the model defined in [12]. These contributions give insight
into the use of protocol-dependent knowledge modalities in epistemic logic.

An interesting avenue for future work is to generalise the use and axiomatisa-
tion of protocol-dependent knowledge modalities to domains outside of gossip.
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problem. Discret. Math. 342(3), 654–663 (2019). https://doi.org/10.1016/j.
disc.2018.10.041

8. van Ditmarsch, H., van Eijck, J., Pardo, P., Ramezanian, R., Schwarzentruber, F.:
Epistemic protocols for dynamic gossip. Journal of Applied Logic 20, 1–31 (2017).
https://doi.org/10.1016/j.jal.2016.12.001

9. van Ditmarsch, H., van Eijck, J., Pardo, P., Ramezanian, R., Schwarzentruber,
F.: Dynamic gossip. Bulletin of the Iranian Mathematical Society 45(3), 701–728
(2019). https://doi.org/10.1007/s41980-018-0160-4

10. van Ditmarsch, H., Gattinger, M., Ramezanian, R.: Everyone knows that everyone
knows: Gossip protocols for super experts. Stud Logica 111(3), 453–499 (2023).
https://doi.org/10.1007/S11225-022-10032-3

11. van Ditmarsch, H., Gattinger, M.: You can only be lucky once: Optimal gossip
for epistemic goals. Mathematical Structures in Computer Science (2024). https:
//doi.org/10.1017/S0960129524000082

12. van Ditmarsch, H., Gattinger, M., Kuijer, L.B., Pardo, P.: Strengthening Gossip
Protocols using Protocol-Dependent Knowledge. Journal of Applied Logics - IfCoLog
Journal of Logics and their Applications 6(1), 157–203 (2019), http://arxiv.org/
abs/1907.12321

13. van Ditmarsch, H., Gattinger, M., Ramezanian, R.: Everyone Knows that Everyone
Knows: Gossip Protocols for Super Experts. Studia Logica 111(3), 453–499 (2023).
https://doi.org/10.1007/s11225-022-10032-3

14. van Ditmarsch, H., van der Hoek, W., Kuijer, L.B.: The logic of gossiping. Arti-
ficial Intelligence 286, 103306 (2020). https://doi.org/10.1016/j.artint.2020.
103306

15. Gattinger, M.: New Directions in Model Checking Dynamic Epistemic Logic. Ph.D.
thesis, University of Amsterdam (2018)

16. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and
broadcasting in communication networks. Networks 18(4), 319–349 (1988). https:
//doi.org/10.1002/net.3230180406

https://doi.org/10.4204/EPTCS.215.5
https://doi.org/10.4204/EPTCS.215.5
https://doi.org/10.4204/EPTCS.251.2
https://doi.org/10.4204/EPTCS.251.2
https://doi.org/10.3233/978-1-61499-419-0-21
https://doi.org/10.3233/978-1-61499-419-0-21
https://doi.org/10.3233/978-1-61499-419-0-21
https://doi.org/10.3233/978-1-61499-419-0-21
https://doi.org/10.1016/0012-365X(72)90001-5
https://doi.org/10.1016/0012-365X(72)90001-5
https://doi.org/10.1007/978-3-030-65840-3\_4
https://doi.org/10.1007/978-3-030-65840-3_4
https://doi.org/10.1007/978-3-030-65840-3\_4
https://doi.org/10.1007/978-3-030-65840-3_4
https://doi.org/10.1016/j.disc.2018.10.041
https://doi.org/10.1016/j.disc.2018.10.041
https://doi.org/10.1016/j.disc.2018.10.041
https://doi.org/10.1016/j.disc.2018.10.041
https://doi.org/10.1016/j.jal.2016.12.001
https://doi.org/10.1016/j.jal.2016.12.001
https://doi.org/10.1007/s41980-018-0160-4
https://doi.org/10.1007/s41980-018-0160-4
https://doi.org/10.1007/S11225-022-10032-3
https://doi.org/10.1007/S11225-022-10032-3
https://doi.org/10.1017/S0960129524000082
https://doi.org/10.1017/S0960129524000082
https://doi.org/10.1017/S0960129524000082
https://doi.org/10.1017/S0960129524000082
http://arxiv.org/abs/1907.12321
http://arxiv.org/abs/1907.12321
https://doi.org/10.1007/s11225-022-10032-3
https://doi.org/10.1007/s11225-022-10032-3
https://doi.org/10.1016/j.artint.2020.103306
https://doi.org/10.1016/j.artint.2020.103306
https://doi.org/10.1016/j.artint.2020.103306
https://doi.org/10.1016/j.artint.2020.103306
https://doi.org/10.1002/net.3230180406
https://doi.org/10.1002/net.3230180406
https://doi.org/10.1002/net.3230180406
https://doi.org/10.1002/net.3230180406


16 Hans van Ditmarsch, Malvin Gattinger, Wouter J. Smit

17. Herzig, A., Maffre, F.: How to share knowledge by gossiping. AI Communications
30(1), 1–17 (2017). https://doi.org/10.3233/AIC-170723

18. Kermarrec, A.M., van Steen, M.: Gossiping in distributed systems. SIGOPS Oper.
Syst. Rev. 41(5), 2–7 (2007). https://doi.org/10.1145/1317379.1317381

19. Smit, W.J.: Axiomatising Protocol-Dependent Knowledge in Gossip. Master’s the-
sis, University of Amsterdam (2024), https://eprints.illc.uva.nl/id/eprint/
2330/

20. Tijdeman, R.: On a telephone problem. Nieuw Archief voor Wiskunde 3(19), 188–192
(1971)

https://doi.org/10.3233/AIC-170723
https://doi.org/10.3233/AIC-170723
https://doi.org/10.1145/1317379.1317381
https://doi.org/10.1145/1317379.1317381
https://eprints.illc.uva.nl/id/eprint/2330/
https://eprints.illc.uva.nl/id/eprint/2330/

	Completeness and Decidability of Protocol-Dependent Knowledge in Gossip

