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What is Interpolation?

If god exists, then the world will never end and all
humans and cats will live forever.

⇒ If god exists and Mia is a cat, then Mia will live forever.

© "Simon’s Cat"
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Craig-Interpolation: Definition

Given:
▶ Λ – logic: set of validities, by semantics or proof system
▶ L(ϕ) – language of a formula

e.g. L(p → ((r ∨ p) ∧ q)) = {p, q, r}

Definition
A logic Λ has Interpolation iff for any ϕ→ ψ ∈ Λ, there is a θ s.t.:
▶ L(θ) ⊆ L(ϕ) ∩ L(ψ),
▶ ϕ→ θ ∈ Λ

▶ and θ → ψ ∈ Λ.
We call θ an interpolant for ϕ→ ψ.

Examples
Given (q ∨ (r ∧ s)) → (¬q → (t ∨ s)) we find θ = q ∨ s.
Given (Eg → Lw ∧ ∀x : (Hx ∨ Cx → Ix)) → (Eg → Cm → Im) we find
θ = Eg → ∀x : (Cx → Ix)
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Logics that have Craig Interpolation
1957: William Craig shows interpolation for First-Order-Logic

▶ Propositional Logic ✓

▶ First-Order Logic ✓

▶ Intuitionistic Logic ✓

▶ Basic and Multi-modal logic ✓

▶ µ-Calculus ✓ (even has uniform interpolation)
▶ . . .

▶ Propositional Dynamic Logic (PDL) ?
Yes, but the history is a mess.
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What is PDL

Propositional Dynamic Logic by Fischer and Ladner (1979)

"fundamental propositional logical system based on modal logic for
describing correctness, termination and equivalence of programs."

Related to: regular expressions, automata theory, multi-agent knowledge,
programming language semantics, . . .
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PDL: Example

v:p

w: q

x: q

A

A

B
B

M,w ⊨ ⟨A⟩q
M,w ⊨ ¬[A]q
M,w ⊨ ⟨A;B⟩q
M,w ⊨ [B∗]q
M,w ⊨ [B;A]⊥

M,w ⊨ ⟨A⟩(⟨A⟩¬q ∧ ⟨B⟩[B∗]q)
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PDL: Basic Definitions

Syntax
Formulas and Programs:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | ⟨α⟩ϕ
α ::= A | α;α | α ∪ α | α∗ | ϕ?

Models
M = (W ,R,V ) where
▶ W : set of worlds/states
▶ R = (Ra)a: family of binary relations on W

▶ V : Prop → P(W ): valuation function

structure KripkeModel (W : Type) : Type where
val : W → Nat → Prop
Rel : Nat → W → W → Prop
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PDL: Semantics

Semantics of formulas:
▶ M,w ⊨ p iff w ∈ V (p)

▶ M,w ⊨ ¬ϕ iff M,w ̸⊨ ϕ
▶ M,w ⊨ ϕ ∨ ψ iff M,w ⊨ ϕ or M,w ⊨ ψ

▶ M,w ⊨ ϕ ∧ ψ iff M,w ⊨ ϕ and M,w ⊨ ψ

▶ M,w ⊨ ϕ→ ψ iff M,w ̸⊨ ϕ or M,w ⊨ ψ

▶ M,w ⊨ [α]ϕ iff for all w ′ ∈ W : wRαw
′ ⇒ M,w ′ ⊨ ϕ.

Semantics of programs:
▶ Rχ;ξ := Rχ;Rξ (consecution)
▶ Rχ∪ξ := Rχ ∪ Rξ (union)
▶ Rχ∗ := (Rχ)

∗ (reflexive-transitive closure)
▶ Rϕ? := {w ∈ W | w ⊨ ϕ} (reflexive test)
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PDL: Language of a formula or program

L(p) := {p}
L(ϕ ∧ ψ) := L(ϕ) ∪ L(ψ)
L(ϕ ∨ ψ) := L(ϕ) ∪ L(ψ)
L(ϕ→ ψ) := L(ϕ) ∪ L(ψ)
L(⟨τ⟩ϕ) = L(τ) ∪ L(ϕ)

L(a) := {a}
L(σ; τ) := L(σ) ∪ L(τ)
L(σ ∪ τ) := L(σ) ∪ L(τ)
L(σ∗) := L(σ)

Example: L([a; b]p → ⟨c⟩q) = {a, b, c , p, q}
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The Question

Does PDL have interpolation?

Example: [(a ∪ b)∗](p ∧ q) → [b∗](q ∨ r) is valid in PDL.

Interpolant: [b∗]q

But how do we always find these systematically?
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History: Does PDL have Interpolation?

▶ 1981 Daniel Leivant: Yes! (using sequent calculus)

▶ 1988 Manfred Borzechowski: Ja! (mit Tableau-Kalkül)
▶ 1999 Marcus Kracht: cannot verify your arguments
▶ 2002 Tomasz Kowalski: Yes! (using super-amalgamation)
▶ 2004 Tomasz Kowalski: Never mind, let me retract that.
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MG’s personal PDL History
▶ 2013 Yde Venema in the Model Theory course:

By the way, for PDL this is an open problem.

▶ 2014 I find out that Kracht is wrong about Leivant being wrong but
Yde Venema and I find other gaps in the proof of Leivant none of us
manages to fill.

▶ 2013/14 I also contact Borzechowski and get his thesis.

▶ 2020 I translate the German Diplomarbeit to English.
▶ 2022 to 2025: reading group with Helle Hvid Hansen, Revantha

Ramanayake, Valentina Trucco Dalmas and Yde Venema (earlier also
Johannes Marti, Jan Rooduijn and Guillermo Menéndez Turata)

▶ 2025 April: we finish and submit our revised proof
https://arxiv.org/abs/2503.13276

All done?

https://w4eg.de/malvin/illc/pdl.pdf
https://arxiv.org/abs/2503.13276
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History of the Formalization Project

▶ 2021 I start to learn Lean - it’s a better Haskell!
▶ 2022 AiML: Interpolation for Basic Modal Logic in Lean 3

https://github.com/m4lvin/tablean

▶ 2023 switch from Lean 3 to Lean 4 (mathport is amazing!)
▶ January 2024: MSc Logic project to get help from students

Amos Nicodemus, Djanira dos Santos Gomes, Wietse Bosman,
Haitian Wang, Xiaoshuang Yang, Jeremy Sorkin

▶ January 2025 and later: more MSc Logic students
Noam Cohen, Eshel Yaron, Madeleine Gignoux

https://github.com/m4lvin/tablean
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Interpolation via Tableaux

The procedure Borzechowski uses is known as Maehara’s Method:
1. Define a sound and complete tableaux system.
2. For a valid implication, build a tableau (top-down).
3. Partition each node in the tableaux (top-down).
4. Define interpolants for all closed nodes / leaves.
5. Bottom-up define interpolants by combining those from child nodes.

Demo: https://w4eg.de/malvin/illc/tapdleau

https://w4eg.de/malvin/illc/tapdleau
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Why is this difficult?
The star.
Without star PDL is essentially multi-modal logic and easy to interpolate.

▶ The sequent calculus by Leivant has a rule with infinitely many
premises:

. . . and then argues that we can turn the system into a finitary one.

▶ The system by Borzechowski uses this rule for the star:

[α∗]p

p; [α][αn]p

(∗)

(where n is literally "n", not a number.)
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Dealing with Repeats

With ∗ in a tableau we may arrive back at the same formulas.

[(Q?)∗]p

p; [Q?][(Q?)∗]p

(∗)

p;¬Q

(?)

p; [(Q?)∗]p

(?)

This is an example of a local repeat.
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Dealing with Local Repeats: Local Unfolding

Idea: given a program α, compute all possible ways to execute it.

Example

Φ3((p? ∪ a); b∗, ψ) = {{¬[a][b∗]ψ}, {p,¬ψ}, {p,¬[b][b∗]ψ}}

Definition
We define H to define one rule that "maximally takes apart" α in ¬[α]ϕ

Ha :=
{
(∅, a)

}
Hτ? :=

{
({τ}, ε)

}
Hα∪β := Hα ∪ Hβ
Hα;β :=

{
(X , δ⃗β) | (X , δ⃗) ∈ Hα, δ ̸= ε

}
∪
{
(X ∪ Y , δ⃗) | (X , ε) ∈ Hα, (Y , δ⃗) ∈ Hβ

}
Hα∗ :=

{
(∅, ε)

}
∪
{
(X , δ⃗α∗) | (X , δ⃗) ∈ Hα, δ⃗ ̸= ε

}
Here the δ ̸= ϵ ensures we do not create local repeats.
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Global Repeats

The star can also lead to repeats like this:

[a∗]p, ¬[a∗]q

p, [a][a∗]p, ¬[a∗]q

(2)

p, [a][a∗]p, ¬q

(3)

p, [a][a∗]p, ¬[a][a∗]q

(3)

[a∗]p, ¬[a∗]q

(M)

♡

To deal with this we use a loading (aka focus) mechanism and accept
loaded-path repeats as closed end nodes of the tableau.
(See examples in the Demo.)
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Main Ideas

▶ Soundness
▶ All local rules (including unfolding) are sound and complete.
▶ Lemma: loaded diamonds true in model can be imitated in tableau.

▶ Completeness
▶ Define "model graphs" similar to canonical models;
▶ Define a determined two-player game: prover vs builder;
▶ Show that from winning strategy we can build

▶ either a model graph
▶ or a closed tableau.

▶ Interpolation?
▶ Maehara’s method!
▶ But what about the loaded-path repeats?
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How to interpolate loops? Pseudo-interpolants with extra stuff!

Problem:
▶ Repeats are leaves, but they do not have interpolants yet!

Two big insights by Borzechowski:
▶ We actually do not care about finding an interpolant for all nodes in

that sub-tableau. Only the root.
▶ We do not have to use the given tableau to find the interpolants.

Instead, define another tree, the pseudo-tableau, and run Maehara’s
method on that!

Alternative explanation:
▶ Pseudo-interpolants: only together with extra stuff fulfil the

conditions for being an interpolant.
▶ In the root node there is no extra stuff, so there we still get a

standard interpolant.

Yet alternative explanation: change the system of equations.
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Dealing with Repeats: More Details

Following slides are by Valentina Trucco Dalmas, thank you!
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More slides by Valentina Trucco Dalmas available at
https://events.illc.uva.nl/llama/

https://events.illc.uva.nl/llama/
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Lean: What

Lean is both
▶ an interactive theorem prover aka proof assistant
▶ a functional programming language

Similar systems: Rocq, Isabelle/HOL, agda, etc.

The key idea underlying formalized proofs: Propositions as Types
Propositions ↔ Types
Proofs ↔ Terms

Example:
theorem exists_example {α : Type} {F G : α → Prop} :

((∃ x, F x) ∧ (∀ x, F x → G x)) → ∃ x, G x :=
fun ⟨ ⟨x,Fx ⟩ , F_sub_G ⟩ => ⟨x, F_sub_G x Fx ⟩

The last line is the term (= proof).
Checking that this function has this type is the same as checking the proof.

https://leanprover-community.github.io/
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Lean: Why?

▶ Absolute certainty.
(Especially when three times before a proof has been claimed ;-)

▶ (Really) understanding the proof.

▶ Bothering your co-authors with annoying details.
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PDL in Lean: Goal

def Interpolant (φ : Formula) (ψ : Formula) (θ : Formula) :=
θ.voc ⊆ φ.voc ∩ ψ.voc ∧ tautology (φ ↣ θ) ∧ tautology (θ ↣ ψ)

theorem interpolation {φ ψ : Formula} :
tautology (φ ↣ ψ) → ∃ θ : Formula , Interpolant φ ψ θ := by

[...]
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PDL in Lean: Overview
AxiomBlame✓

Beth✓

Completeness✓

PartInterpolation?

Discon✓

Substitution✓

Distance✓

Examples✓

Game✓

TableauGame?

Interpolation✓

LocalTableau✓

Tableau✓

Measures✓

Semantics✓

Modelgraphs✓

SemQuot?

Soundness?

Star✓

UnfoldBox✓ UnfoldDia✓

Syntax✓

Vocab✓

TableauExamples? TableauPath✓

Vector✓
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Selected Issues

1. Mutual Induction / Recursion
2. Local Tableaux are finite (even with local unfolding)
3. How to represent proof trees with repeats?

(There are of course more — we are not even doing interpolation yet.)
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Mutual induction: Syntax of formulas and programs

PDL really likes/needs mutual double recursion:
▶ programs in formulas
▶ formulas in programs

mutual
inductive Formula : Type

| bottom : Formula
| atom_prop : Nat → Formula
| neg : Formula → Formula
| and : Formula → Formula → Formula
| box : Program → Formula → Formula

deriving Repr ,DecidableEq
inductive Program : Type

| atom_prog : Nat → Program
| sequence : Program → Program → Program
| union : Program → Program → Program
| star : Program → Program
| test : Formula → Program

deriving Repr ,DecidableEq
end



34

Mutual induction: Semantics

mutual
@[simp]
def evaluate {W : Type} : KripkeModel W → W → Formula → Prop

| _, _, ⊥ => False
| M, w, · c => M.val w c
| M, w, ∼φ => Not (evaluate M w φ)
| M, w, φ

∧
ψ => evaluate M w φ ∧ evaluate M w ψ

| M, w, ⌈α⌉ φ => ∀ v : W, relate M α w v → evaluate M v φ
@[simp]
def relate {W : Type} : KripkeModel W → Program → W → W → Prop

| M, · c, w, v => M.Rel c w v
| M, α;’β, w, v => ∃ y, relate M α w y ∧ relate M β y v
| M, α∪β, w, v => relate M α w v ∨ relate M β w v
| M, ∗α, w, v => Relation.ReflTransGen (relate M α) w v
| M, ?’φ, w, v => w = v ∧ evaluate M w φ

end
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Issue 2: Proofs about Mutual Induction

Unfortunately the induction tactic in Lean does not work for mutually
inductive types.

This was my occasion to learn:

Induction = Recursion

Induction proofs are the same as recursive functions!
(Recall that theorems are functions.)

So, instead of using induction we can recursively call the theorem to
obtain our induction hypotheses.
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Issue 2: Termination Issues

The local unfolding rules for boxes and diamonds may
generate an arbitrary number of formulas

Usual approaches to show that tableaux are finite / terminate now fail:
▶ the sum of the length of formulas goes up . . .
▶ while the maximum of the length of formulas may stay stithe same.

▶ Solution in paper: subformula property via Fischer-Ladner closure.

▶ But in Lean we do not (yet) have a computable FL-closure
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Issue 2 solution: The DM-ordering (work by Haitian Wang)

Solution: the Dershowitz-Manna Ordering on Multisets.
def IsDershowitzMannaLT [Preorder α] (M N : Multiset α) : Prop :=

∃ X Y Z,
Z ̸= ∅

∧ M = X + Y
∧ N = X + Z
∧ ∀ y ∈ Y, ∃ z ∈ Z, y < z

theorem wellFounded_isDershowitzMannaLT [WellFoundedLT α] :
WellFounded

(IsDershowitzMannaLT : Multiset α → Multiset α → Prop)

This was not in Mathlib, but there existed a Coq Rocq formalisation that
we Haitian used as inspiration.
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Side note: getting DM into mathlib

After finishing the proof of the DM Ordering Theorem in Lean, it took still
quite some effort to make the code stable and maintainable, so that it was
accepted into mathlib:
https://github.com/leanprover-community/mathlib4/pull/14411

Lesson: There is formalizing in Lean and there is formalizing for mathlib.

https://github.com/leanprover-community/mathlib4/pull/14411
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Issue 3: cyclic proofs

The inductive type Tableau should basically represent trees. . .
. . . but: loaded-path repeats need to see what is above them

Solution: Dependent types

inductive Tableau : History → Sequent → Type
| loc [..]
| pdl (r : PdlRule X Y)

(next : Tableau (X :: Hist) Y) : Tableau Hist X
| lrep (lpr : X ∈ Hist ∧ ...) : Tableau Hist X

(heavily simplified code)
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Summary

PDL has Craig Interpolation.
▶ The oldest proof has problems and gaps.
▶ The newest already was officially revoked.
▶ The middle one apparently nobody read, but did have the right ideas!

Lessons:
▶ Whether something is an open question can be an open question.
▶ German to English is easy, even without understanding it.
▶ English to Haskell is tricky, English to Lean is hard.
▶ Formalizing is hard fun, formalizing for Mathlib is harder.

▶ If you want to help, please contact me!

Dreaming bigger:
▶ Why is there no Modal Logic in Mathlib?

Why is there no Mathlib for Modal Logic?
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Main References
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Other related code:

▶ Basic Modal Logic in Lean 3: https://github.com/m4lvin/tablean

▶ PDL Prover in Haskell: https://w4eg.de/malvin/illc/tapdleau

https://arxiv.org/abs/2503.13276
https://github.com/m4lvin/lean4-pdl
https://github.com/leanprover-community/mathlib4/pull/14411
https://github.com/m4lvin/tablean
https://w4eg.de/malvin/illc/tapdleau
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▶ English Translation (2020):
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1999 Kracht about Leivant and Borzechowski

Marcus Kracht writes the book Tools and Techniques in Modal Logic and
says in Section 10.6 "The Unanswered Section" (p. 493):

"[T]he problem of interpolation for PDL is one of the major open
problems in this area. Twice a solution has been announced [. . . ],
but in neither case was it possible to verify the argument.

The
argument of Leivant makes use of the fact that if ϕ ⊢PDL ψ then
we can bound the size of a possible countermodel so that the
star α∗ only needs to search up to a depth d which depends on
ϕ and ψ. [. . . ] However, this is tantamount to the following.
Abbreviate by PDLn the strengthening of PDL by axioms of the
form [a∗]p ↔ [a≤n]p for all a. Then, by the finite model property
of PDL, PDL is the intersection of the logics PDLn. Unfortunately,
it is not so that interpolation is preserved under intersection."

Note: Kracht does not explain why Borzechowski should be wrong.
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2020 Translation
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2023 Haskell Prover

In 2023 I resurrected my 2016 attempt of a tableaux prover in Haskell,
using the proof rules from Borzechowski (1988).
Now with a better understanding of the proof thanks to the reading group,
I did manage to make a prover that seems to work for all examples.

See https://w4eg.de/malvin/illc/tapdleau for our system, and
https://w4eg.de/malvin/illc/tapdleau-borzechowski for the
version with n-formulas.

https://w4eg.de/malvin/illc/tapdleau
https://w4eg.de/malvin/illc/tapdleau-borzechowski
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2023 January Meeting in Berlin

I managed to meet Manfred Borzechowski in person!


