# Lecture 1, part 2: ElmGossip

Knowledge and Gossip — ESSLLI 2022

Malvin Gattinger (ILLC, Amsterdam) 2022-08-08, Galway

https://malv.in/2022/gossip/

Or we can *add* edges to the same drawing.

Or we can *add* edges to the same drawing.

But then, what if we want to go back / make a different call?

Or we can *add* edges to the same drawing.

But then, what if we want to go back / make a different call?

What if we want to check many different call sequences?

Or we can *add* edges to the same drawing.

But then, what if we want to go back / make a different call?

What if we want to check many different call sequences?

This quickly becomes tedious. Hence, let's automate!

# ElmGossip



# ElmGossip

| C ElmGossipo souro                                                                                                | -                   | Gossip graph          |          | Canonical representation | ? |
|-------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|----------|--------------------------|---|
| Gossip Protocols                                                                                                  | ?                   | Xyaz Axzy ZyAb BaZX Y | Examples | Abce aBce BCde AbCD E    | ? |
| Π         ¬         σ <sub>x</sub> = ε           Π         ∨            Π         ¬         σ <sub>x</sub> = τ;xz | •                   | N 44 /<br>S 44 /      |          |                          |   |
| + Add constituent                                                                                                 |                     |                       |          |                          |   |
| Spider                                                                                                            | \$ ?                |                       |          |                          |   |
| X & A X & Z X & Y B &                                                                                             | •X Β <b>∿</b> •A    | G                     | ×        | Z)                       |   |
| Call sequence Call sequence input No call sequence entered                                                        | <b>?</b><br>Execute | (Y                    |          | ×                        |   |
| Call history                                                                                                      |                     |                       | A        | •••••••B                 |   |
|                                                                                                                   | . Z<br>. X          |                       |          |                          |   |

Ramon Meffert: *Tools for Gossip* (2021), Bachelor thesis AI, University of Groningen.

Code: https://github.com/RamonMeffert/elm-gossip

Try it: https://r3n.nl/elm-gossip/

# Short notation for gossip graphs



AB aB aC

## Short notation for gossip graphs



AB aB aC

- A graph of *n* agents is described by *n* words separated by spaces.
- Knowing the **number** of agent *a* is denoted by a
- Knowing the secret of agent *a* is denoted by A



Ad ABc Cd D



Ad ABc Cd D



Abcdefg B CE D CE F G

# Making calls

Click on a possible call to change the graph!



In ElmGossip the following protocols are predefined:

| Protocol         | Calling condition                                  |
|------------------|----------------------------------------------------|
| Any              | Т                                                  |
| Call Once        | $xy  ot\in \sigma_x \land yx  ot\in \sigma_x$      |
| Lean New Secrets | $\neg S^{\sigma} xy$                               |
| Spider           | $\sigma_{x} = \epsilon \lor \sigma_{x} = \tau; xz$ |
| Token            | $\sigma_{x} = \epsilon \lor \sigma_{x} = \tau; zx$ |
| Weak Call Once   | $xy  ot\in \sigma_x$                               |

In ElmGossip the following protocols are predefined:

| Protocol         | Calling condition                                  |
|------------------|----------------------------------------------------|
| Any              | Т                                                  |
| Call Once        | $xy  ot\in \sigma_x \land yx  ot\in \sigma_x$      |
| Lean New Secrets | $\neg S^{\sigma} xy$                               |
| Spider           | $\sigma_{x} = \epsilon \lor \sigma_{x} = \tau; xz$ |
| Token            | $\sigma_{x} = \epsilon \lor \sigma_{x} = \tau; zx$ |
| Weak Call Once   | $xy  ot\in \sigma_x$                               |

And you can define your own custom protocols!



#### Definition

We say that protocol A is *stronger* than protocol B iff the condition of A implies the condition of B. Hence, a *weaker* protocol can allow *more* calls!

## Definition

We say that protocol A is *stronger* than protocol B iff the condition of A implies the condition of B. Hence, a *weaker* protocol can allow *more* calls!

#### Lemma

- LNS is stronger than CO.
- CO is stronger than weak CO.

## Definition

We say that protocol A is *stronger* than protocol B iff the condition of A implies the condition of B. Hence, a *weaker* protocol can allow *more* calls!

#### Lemma

- LNS is stronger than CO.
- CO is stronger than weak CO.
- All LNS sequences are also CO sequences. (But not vice versa  $\rightarrow$  exercise!)

You can also define your own protocols in ElmGossip!

Example:

$$\sigma^{x} = \epsilon \ \lor \ xy \in \sigma^{x}$$

What does this say? 💽



Hans also talked about the higher-order effects of gossip calls and  $K_i$ .

What would be a protocol condition that we **cannot** define in ElmGossip?



Hans also talked about the higher-order effects of gossip calls and  $K_i$ .

What would be a protocol condition that we cannot define in ElmGossip?



Example: 🐶

$$PIG_{xy} := \hat{K}_x \exists z \neg (Sxz \leftrightarrow Syz)$$

Why can we not check such a protocol in ElmGossip?

Hans also talked about the higher-order effects of gossip calls and  $K_i$ .

What would be a protocol condition that we cannot define in ElmGossip?



Example: 🐶

$$PIG_{xy} := \hat{K}_x \exists z \neg (Sxz \leftrightarrow Syz)$$

Why can we not check such a protocol in ElmGossip?

 $\Rightarrow$  Tomorrow we will see a more general model checker for more general protocols.

ElmGossip is written in the functional programming language Elm. Example piece of code:

```
containing : CallSequence -> AgentId -> CallSequence
containing sequence agent =
    case sequence of
        [] ->
            []
        call :: calls ->
            if includes call agent then
                call :: containing calls agent
            else
                containing calls agent
```

Links: https://github.com/RamonMeffert/elm-gossip · https://guide.elm-lang.org/

See course website!

https://malv.in/2022/gossip/exercises.html