
Functional Programming for Logicians - Lecture 6
Beyond Haskell

Malvin Gattinger

21 January 2021

Lecture 6: Beyond Haskell

Haskell extras

User interfaces

Other Functional Languages

Functional Style

Haskell extras

Language Extensions

{-# LANGUAGE
InstanceSigs,
BangPatterns,
ForeignFunctionInterface,
OverloadedStrings,
TemplateHaskell
#-}

module L6 where

import Data.FileEmbed
import qualified Data.Text as T
import qualified Data.Text.Encoding as E
import qualified Data.Text.Lazy as TL
import Foreign.C
import Foreign.Ptr (Ptr,nullPtr)
import Web.Scotty

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/exts.html

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/exts.html

Language Extension: InstanceSigs

data Tree a = Leaf a | Branch (Tree a) (Tree a)
deriving (Eq,Ord,Show)

Remember that we had to put these in comments:

instance Functor Tree where
-- fmap :: (a -> b) -> Tree a -> Tree b
fmap f (Leaf x) = Leaf (f x)
fmap f (Branch left right) = Branch (fmap f left)

(fmap f right)

The InstanceSigs extension allows this:

instance Functor Tree where
fmap :: (a -> b) -> Tree a -> Tree b
fmap f (Leaf x) = Leaf (f x)
fmap f (Branch left right) = Branch (fmap f left)

(fmap f right)

Language Extension: InstanceSigs

data Tree a = Leaf a | Branch (Tree a) (Tree a)
deriving (Eq,Ord,Show)

Remember that we had to put these in comments:

instance Functor Tree where
-- fmap :: (a -> b) -> Tree a -> Tree b
fmap f (Leaf x) = Leaf (f x)
fmap f (Branch left right) = Branch (fmap f left)

(fmap f right)

The InstanceSigs extension allows this:

instance Functor Tree where
fmap :: (a -> b) -> Tree a -> Tree b
fmap f (Leaf x) = Leaf (f x)
fmap f (Branch left right) = Branch (fmap f left)

(fmap f right)

Language Extension: BangPatterns

Recall that Haskell by default is lazy:

lazyAnd :: Bool -> Bool -> Bool
lazyAnd p q = p && q

λ> lazyAnd False undefined
False

A bang pattern makes a function strict in this argument:

strictAnd :: Bool -> Bool -> Bool
strictAnd !p !q = p && q

λ> strictAnd False undefined
*** Exception: Prelude.undefined

Language Extension: BangPatterns

Recall that Haskell by default is lazy:

lazyAnd :: Bool -> Bool -> Bool
lazyAnd p q = p && q

λ> lazyAnd False undefined
False

A bang pattern makes a function strict in this argument:

strictAnd :: Bool -> Bool -> Bool
strictAnd !p !q = p && q

λ> strictAnd False undefined
*** Exception: Prelude.undefined

Language Extension: BangPatterns (continued)

NOTE: The ‘!’ only evaluates to “weak head normal form”.

For lists, this does not mean that we compute all elements!

myNumbers :: [Integer]
myNumbers = [1..]

myf :: [Integer] -> [Integer]
myf !xs = filter odd xs

λ> take 10 (myf myNumbers)
[1,3,5,7,9,11,13,15,17,19]

See https://wiki.haskell.org/Weak_head_normal_form

https://wiki.haskell.org/Weak_head_normal_form

Language Extension: BangPatterns (continued)

NOTE: The ‘!’ only evaluates to “weak head normal form”.

For lists, this does not mean that we compute all elements!

myNumbers :: [Integer]
myNumbers = [1..]

myf :: [Integer] -> [Integer]
myf !xs = filter odd xs

λ> take 10 (myf myNumbers)
[1,3,5,7,9,11,13,15,17,19]

See https://wiki.haskell.org/Weak_head_normal_form

https://wiki.haskell.org/Weak_head_normal_form

Language Extension: BangPatterns (continued)

NOTE: The ‘!’ only evaluates to “weak head normal form”.

For lists, this does not mean that we compute all elements!

myNumbers :: [Integer]
myNumbers = [1..]

myf :: [Integer] -> [Integer]
myf !xs = filter odd xs

λ> take 10 (myf myNumbers)
[1,3,5,7,9,11,13,15,17,19]

See https://wiki.haskell.org/Weak_head_normal_form

https://wiki.haskell.org/Weak_head_normal_form

Language Extension: BangPatterns (continued)

NOTE: The ‘!’ only evaluates to “weak head normal form”.

For lists, this does not mean that we compute all elements!

myNumbers :: [Integer]
myNumbers = [1..]

myf :: [Integer] -> [Integer]
myf !xs = filter odd xs

λ> take 10 (myf myNumbers)
[1,3,5,7,9,11,13,15,17,19]

See https://wiki.haskell.org/Weak_head_normal_form

https://wiki.haskell.org/Weak_head_normal_form

FFI: Foreign Function Interface

We can call C functions from Haskell!

-- pure function
foreign import ccall "sin" c_sin :: CDouble -> CDouble
sine :: Double -> Double
sine d = realToFrac (c_sin (realToFrac d))

-- impure function
foreign import ccall "time" c_time :: Ptr a -> IO CTime
getTime :: IO CTime
getTime = c_time nullPtr

Example from https://wiki.haskell.org/FFI_complete_examples

More complex example: https://github.com/m4lvin/HasCacBDD

https://wiki.haskell.org/FFI_complete_examples
https://github.com/m4lvin/HasCacBDD

FFI: Foreign Function Interface

We can call C functions from Haskell!

-- pure function
foreign import ccall "sin" c_sin :: CDouble -> CDouble
sine :: Double -> Double
sine d = realToFrac (c_sin (realToFrac d))

-- impure function
foreign import ccall "time" c_time :: Ptr a -> IO CTime
getTime :: IO CTime
getTime = c_time nullPtr

Example from https://wiki.haskell.org/FFI_complete_examples

More complex example: https://github.com/m4lvin/HasCacBDD

https://wiki.haskell.org/FFI_complete_examples
https://github.com/m4lvin/HasCacBDD

Overloaded Strings

The standard definition

type String = [Char]

is not very efficient for large amounts of (unicode) text.

Better types and functions are provided by:

I Data.Text

I Data.Text.Lazy

We can pack and unpack to convert between String and Text.

With the OverloadedStrings language extension we can still
easily write values of type Text:

myText :: T.Text
myText = "justSomethingInQuotationMarks"

https://hackage.haskell.org/package/text/docs/Data-Text.html

Overloaded Strings

The standard definition

type String = [Char]

is not very efficient for large amounts of (unicode) text.

Better types and functions are provided by:

I Data.Text

I Data.Text.Lazy

We can pack and unpack to convert between String and Text.

With the OverloadedStrings language extension we can still
easily write values of type Text:

myText :: T.Text
myText = "justSomethingInQuotationMarks"

https://hackage.haskell.org/package/text/docs/Data-Text.html

Template Haskell
Imagine you want to write many similar functions.

plusOne :: Int -> Int
plusOne x = x + 1

plusTwo :: Int -> Int
plusTwo x = x + 2

plusThree :: Int -> Int
plusThree x = x +3

Template Haskell: write Haskell code to generate Haskell code.

Concrete example of TH: include a file at compile-time:

thisFileContent :: T.Text
thisFileContent = E.decodeUtf8 $(embedFile "L6.lhs")

Template Haskell
Imagine you want to write many similar functions.

plusOne :: Int -> Int
plusOne x = x + 1

plusTwo :: Int -> Int
plusTwo x = x + 2

plusThree :: Int -> Int
plusThree x = x +3

Template Haskell: write Haskell code to generate Haskell code.

Concrete example of TH: include a file at compile-time:

thisFileContent :: T.Text
thisFileContent = E.decodeUtf8 $(embedFile "L6.lhs")

Template Haskell
Imagine you want to write many similar functions.

plusOne :: Int -> Int
plusOne x = x + 1

plusTwo :: Int -> Int
plusTwo x = x + 2

plusThree :: Int -> Int
plusThree x = x +3

Template Haskell: write Haskell code to generate Haskell code.

Concrete example of TH: include a file at compile-time:

thisFileContent :: T.Text
thisFileContent = E.decodeUtf8 $(embedFile "L6.lhs")

User interfaces

Lexing and Parsing

The problem: our users want to enter

(p -> q) & !(p2 <-> q23)

instead of

Conj (Impl (P "p") (P "q")) (Neg (BiImpl (P "p2") (P "q23")))

We want:

I a lexer to translate the string to a list of tokens
I a parser to translate tokens to something of type Form

The standard Haskell tools for this are Happy and Alex.

Easy example: https://github.com/da-x/happy-alex-example
Longer example: Lex.x Parse.y from SMCDEL

https://www.haskell.org/happy/
https://www.haskell.org/alex/
https://github.com/da-x/happy-alex-example
https://github.com/jrclogic/SMCDEL/blob/master/src/SMCDEL/Internal/Lex.x
https://github.com/jrclogic/SMCDEL/blob/master/src/SMCDEL/Internal/Parse.y

Lexing and Parsing

The problem: our users want to enter

(p -> q) & !(p2 <-> q23)

instead of

Conj (Impl (P "p") (P "q")) (Neg (BiImpl (P "p2") (P "q23")))

We want:

I a lexer to translate the string to a list of tokens
I a parser to translate tokens to something of type Form

The standard Haskell tools for this are Happy and Alex.

Easy example: https://github.com/da-x/happy-alex-example
Longer example: Lex.x Parse.y from SMCDEL

https://www.haskell.org/happy/
https://www.haskell.org/alex/
https://github.com/da-x/happy-alex-example
https://github.com/jrclogic/SMCDEL/blob/master/src/SMCDEL/Internal/Lex.x
https://github.com/jrclogic/SMCDEL/blob/master/src/SMCDEL/Internal/Parse.y

Lexing and Parsing

The problem: our users want to enter

(p -> q) & !(p2 <-> q23)

instead of

Conj (Impl (P "p") (P "q")) (Neg (BiImpl (P "p2") (P "q23")))

We want:

I a lexer to translate the string to a list of tokens
I a parser to translate tokens to something of type Form

The standard Haskell tools for this are Happy and Alex.

Easy example: https://github.com/da-x/happy-alex-example
Longer example: Lex.x Parse.y from SMCDEL

https://www.haskell.org/happy/
https://www.haskell.org/alex/
https://github.com/da-x/happy-alex-example
https://github.com/jrclogic/SMCDEL/blob/master/src/SMCDEL/Internal/Lex.x
https://github.com/jrclogic/SMCDEL/blob/master/src/SMCDEL/Internal/Parse.y

Web interfaces
One of the easiest ways to make applications in Haskell usable by
non-Haskellers and non-programmers is to add a web interface.

There exist multiple libraries providing different levels of abstraction:

I the easiest: Scotty

myScotty :: IO ()
myScotty = scotty 3000 $
get "/" $ do

html $ mconcat
["<h1>Hello world!</h1>"
, TL.pack (show $ take 20 $ myf myNumbers)]

More complex example: SMCDEL web interface (source)

I more complex, fairly established: Yesod
https://www.yesodweb.com/

I new and fancy: IHP: Integrated Haskell Platform
https://ihp.digitallyinduced.com/

https://hackage.haskell.org/package/scotty
https://w4eg.de/malvin/illc/smcdelweb/index.html
https://github.com/jrclogic/SMCDEL/blob/72c3d9d847d3356d90c4a89f74099c92ea8c1ab1/exec/smcdel-web.hs#L33
https://www.yesodweb.com/
https://ihp.digitallyinduced.com/

Web interfaces
One of the easiest ways to make applications in Haskell usable by
non-Haskellers and non-programmers is to add a web interface.

There exist multiple libraries providing different levels of abstraction:

I the easiest: Scotty

myScotty :: IO ()
myScotty = scotty 3000 $
get "/" $ do

html $ mconcat
["<h1>Hello world!</h1>"
, TL.pack (show $ take 20 $ myf myNumbers)]

More complex example: SMCDEL web interface (source)

I more complex, fairly established: Yesod
https://www.yesodweb.com/

I new and fancy: IHP: Integrated Haskell Platform
https://ihp.digitallyinduced.com/

https://hackage.haskell.org/package/scotty
https://w4eg.de/malvin/illc/smcdelweb/index.html
https://github.com/jrclogic/SMCDEL/blob/72c3d9d847d3356d90c4a89f74099c92ea8c1ab1/exec/smcdel-web.hs#L33
https://www.yesodweb.com/
https://ihp.digitallyinduced.com/

Web interfaces
One of the easiest ways to make applications in Haskell usable by
non-Haskellers and non-programmers is to add a web interface.

There exist multiple libraries providing different levels of abstraction:

I the easiest: Scotty

myScotty :: IO ()
myScotty = scotty 3000 $
get "/" $ do

html $ mconcat
["<h1>Hello world!</h1>"
, TL.pack (show $ take 20 $ myf myNumbers)]

More complex example: SMCDEL web interface (source)

I more complex, fairly established: Yesod
https://www.yesodweb.com/

I new and fancy: IHP: Integrated Haskell Platform
https://ihp.digitallyinduced.com/

https://hackage.haskell.org/package/scotty
https://w4eg.de/malvin/illc/smcdelweb/index.html
https://github.com/jrclogic/SMCDEL/blob/72c3d9d847d3356d90c4a89f74099c92ea8c1ab1/exec/smcdel-web.hs#L33
https://www.yesodweb.com/
https://ihp.digitallyinduced.com/

Other Functional Languages

Dependent Types
This is not valid Haskell:

repeater :: Int -> a -> ???
repeater 1 x = x
repeater 2 x = (x,x)
repeater 3 x = (x,x,x)

The result type is not allowed to depend on the input value!

Sometimes polymorphism might look like it allows this, but all
polymorphism is resolved at compile-time!

The most common dependent types are (Σx : a, bx) and (Πx : a, bx).

For the current state of “adding dependent types to Haskell”, follow
Stephanie Weirich:

I Talk “Dependent Types in Haskell” at Strange Loop 2017
https://youtu.be/wNa3MMbhwS4

I Episode 015 of the CoRecursive podcast (13 June 2018)
https://corecursive.com/015-dependant-types-in-haskell-with-stephanie-weirich/

https://youtu.be/wNa3MMbhwS4
https://corecursive.com/015-dependant-types-in-haskell-with-stephanie-weirich/

Dependent Types
This is not valid Haskell:

repeater :: Int -> a -> ???
repeater 1 x = x
repeater 2 x = (x,x)
repeater 3 x = (x,x,x)

The result type is not allowed to depend on the input value!

Sometimes polymorphism might look like it allows this, but all
polymorphism is resolved at compile-time!

The most common dependent types are (Σx : a, bx) and (Πx : a, bx).

For the current state of “adding dependent types to Haskell”, follow
Stephanie Weirich:

I Talk “Dependent Types in Haskell” at Strange Loop 2017
https://youtu.be/wNa3MMbhwS4

I Episode 015 of the CoRecursive podcast (13 June 2018)
https://corecursive.com/015-dependant-types-in-haskell-with-stephanie-weirich/

https://youtu.be/wNa3MMbhwS4
https://corecursive.com/015-dependant-types-in-haskell-with-stephanie-weirich/

Dependent Types
This is not valid Haskell:

repeater :: Int -> a -> ???
repeater 1 x = x
repeater 2 x = (x,x)
repeater 3 x = (x,x,x)

The result type is not allowed to depend on the input value!

Sometimes polymorphism might look like it allows this, but all
polymorphism is resolved at compile-time!

The most common dependent types are (Σx : a, bx) and (Πx : a, bx).

For the current state of “adding dependent types to Haskell”, follow
Stephanie Weirich:

I Talk “Dependent Types in Haskell” at Strange Loop 2017
https://youtu.be/wNa3MMbhwS4

I Episode 015 of the CoRecursive podcast (13 June 2018)
https://corecursive.com/015-dependant-types-in-haskell-with-stephanie-weirich/

https://youtu.be/wNa3MMbhwS4
https://corecursive.com/015-dependant-types-in-haskell-with-stephanie-weirich/

Dependent Types
This is not valid Haskell:

repeater :: Int -> a -> ???
repeater 1 x = x
repeater 2 x = (x,x)
repeater 3 x = (x,x,x)

The result type is not allowed to depend on the input value!

Sometimes polymorphism might look like it allows this, but all
polymorphism is resolved at compile-time!

The most common dependent types are (Σx : a, bx) and (Πx : a, bx).

For the current state of “adding dependent types to Haskell”, follow
Stephanie Weirich:

I Talk “Dependent Types in Haskell” at Strange Loop 2017
https://youtu.be/wNa3MMbhwS4

I Episode 015 of the CoRecursive podcast (13 June 2018)
https://corecursive.com/015-dependant-types-in-haskell-with-stephanie-weirich/

https://youtu.be/wNa3MMbhwS4
https://corecursive.com/015-dependant-types-in-haskell-with-stephanie-weirich/

Lean
structure kripkeModel (W : Type) : Type :=

(val : W → char → Prop)
(rel : W → W → Prop)

def evaluate {W : Type} : kripkeModel W → W → formula → Prop
| M w bot := false
| M w (P c) := M.val w c
| M w (~ phi) := not (evaluate M w phi)
| M w (phi ∧ psi) := evaluate M w phi ∧ evaluate M w psi
| M w ([] phi) := ∀ v : W, (M.rel w v → evaluate M v phi)

I proof assistant (with a comunity of actual mathematicians using it)
I based on “Propositions as Types”: proving is programming is proving!
I includes dependent types

Side note: There seems surprisingly little Logic in mathlib?

If you are interested: Malvin is currently trying to translate this old proof
of unknown status to Lean: https://malv.in/2020/borzechowski-pdl/.

https://malv.in/2020/borzechowski-pdl/

Lean
structure kripkeModel (W : Type) : Type :=

(val : W → char → Prop)
(rel : W → W → Prop)

def evaluate {W : Type} : kripkeModel W → W → formula → Prop
| M w bot := false
| M w (P c) := M.val w c
| M w (~ phi) := not (evaluate M w phi)
| M w (phi ∧ psi) := evaluate M w phi ∧ evaluate M w psi
| M w ([] phi) := ∀ v : W, (M.rel w v → evaluate M v phi)

I proof assistant (with a comunity of actual mathematicians using it)
I based on “Propositions as Types”: proving is programming is proving!
I includes dependent types

Side note: There seems surprisingly little Logic in mathlib?

If you are interested: Malvin is currently trying to translate this old proof
of unknown status to Lean: https://malv.in/2020/borzechowski-pdl/.

https://malv.in/2020/borzechowski-pdl/

Lean
structure kripkeModel (W : Type) : Type :=

(val : W → char → Prop)
(rel : W → W → Prop)

def evaluate {W : Type} : kripkeModel W → W → formula → Prop
| M w bot := false
| M w (P c) := M.val w c
| M w (~ phi) := not (evaluate M w phi)
| M w (phi ∧ psi) := evaluate M w phi ∧ evaluate M w psi
| M w ([] phi) := ∀ v : W, (M.rel w v → evaluate M v phi)

I proof assistant (with a comunity of actual mathematicians using it)
I based on “Propositions as Types”: proving is programming is proving!
I includes dependent types

Side note: There seems surprisingly little Logic in mathlib?

If you are interested: Malvin is currently trying to translate this old proof
of unknown status to Lean: https://malv.in/2020/borzechowski-pdl/.

https://malv.in/2020/borzechowski-pdl/

Elm
update : Msg -> Model -> Model
update msg model =

case msg of
Increment ->

model + 1
Decrement ->

model - 1

I compiles to JavaScript

I based on “functional reactive programming”

I established the “elm architecture”

I goal: 0 runtime errors ⇒ even more strict than Haskell!

See https://elm-lang.org/, above is the “Buttons” example.

Larger example: https://github.com/RamonMeffert/elm-gossip

https://elm-lang.org/
https://github.com/RamonMeffert/elm-gossip

Elm
update : Msg -> Model -> Model
update msg model =

case msg of
Increment ->

model + 1
Decrement ->

model - 1

I compiles to JavaScript

I based on “functional reactive programming”

I established the “elm architecture”

I goal: 0 runtime errors ⇒ even more strict than Haskell!

See https://elm-lang.org/, above is the “Buttons” example.

Larger example: https://github.com/RamonMeffert/elm-gossip

https://elm-lang.org/
https://github.com/RamonMeffert/elm-gossip

Many more languages

I Agda
I Idris
I Scala
I C#
I F#
I . . .

Functional Style

Functional Style

I Avoid global variables (and thus global state)!

I Try to write pure functions whenever possible!

I Use data structures that can be mapped over etc.

Example: Python

Python has lambda, map and filter too!

Example with lambda:

def myfunc(n):
return lambda a : a * n

mydoubler = myfunc(2)
mytripler = myfunc(3)

print(mydoubler(11))
print(mytripler(11))

from https://www.w3schools.com/python/python_lambda.asp

https://www.w3schools.com/python/python_lambda.asp

Example: Python

Python has lambda, map and filter too!

Example with lambda:

def myfunc(n):
return lambda a : a * n

mydoubler = myfunc(2)
mytripler = myfunc(3)

print(mydoubler(11))
print(mytripler(11))

from https://www.w3schools.com/python/python_lambda.asp

https://www.w3schools.com/python/python_lambda.asp

Example: C — the horror

Any function may do whatever it wants!

int square(int n) {
// format hard drive here?!
return n * n;

}

Example: C — some good stuff
C has types, including sums and products:

type Thing = Either Int String

data Animal = Cat | Horse | Koala

typedef union Thing {
int myInt;
char* myCharP;

} Thing;

typedef enum Animal {
Cat,
Horse,
Koala

} Animal;

Note: depending on the compiler unions are not actually checked!

You might thus interpret something as int that is actually char*.

Example: C — some good stuff
C has types, including sums and products:

type Thing = Either Int String

data Animal = Cat | Horse | Koala

typedef union Thing {
int myInt;
char* myCharP;

} Thing;

typedef enum Animal {
Cat,
Horse,
Koala

} Animal;

Note: depending on the compiler unions are not actually checked!

You might thus interpret something as int that is actually char*.

Example: PHP

https://www.functionalphp.com/

https://www.functionalphp.com/

QuickCheck conquering the world

Property-based testing is the main idea behind QuickCheck:

1. define properties that should hold,
2. define “recipes” for generating random values,
3. run the tests!

By now this has spread to many other languages:

I Python: https://hypothesis.works/

I JavaScript: https://github.com/jsverify/jsverify

I Go: https://pkg.go.dev/testing/quick

I . . .

https://hypothesis.works/
https://github.com/jsverify/jsverify
https://pkg.go.dev/testing/quick

QuickCheck conquering the world

Property-based testing is the main idea behind QuickCheck:

1. define properties that should hold,
2. define “recipes” for generating random values,
3. run the tests!

By now this has spread to many other languages:

I Python: https://hypothesis.works/

I JavaScript: https://github.com/jsverify/jsverify

I Go: https://pkg.go.dev/testing/quick

I . . .

https://hypothesis.works/
https://github.com/jsverify/jsverify
https://pkg.go.dev/testing/quick

Thank you for listening, and I am curious to see your projects!

Next and & last meeting: presentations on 28 January

	Haskell extras
	User interfaces
	Other Functional Languages
	Functional Style

