
Functional Programming for Logicians - Lecture 5
(Symbolic) Model Checking (Dynamic) Epistemic Logic(s)

Malvin Gattinger

19 January 2022

Are there more red or more blue points?

Are there more red or more blue points?

6× 4×

Are there more red or more blue points?

Representation matters!

Overview
module L5 where

Epistemic Logic and Public Announcement Logic

Model Checking

Symbolic Model Checking S5 PAL

Binary Decision Diagrams

Examples and Benchmarks

Beyond S5 PAL

Summary

Two (unsafe!) helper functions we need later.

(!) :: Eq a => [(a,b)] -> a -> b
(!) v x = let (Just y) = lookup x v in y

(?) :: Eq a => [[a]] -> a -> [a]
(?) lls x = head (filter (x `elem`) lls)

Epistemic Logic and Public Announcement Logic

Example: Muddy Children

Imagine three children playing together outside.
Some of them get mud on their foreheads.
Each can see the face of others but not on their own forehead.

Along comes the father: “At least one of you has mud on your forehead”.
The father then asks the following question, over and over: “Does any
of you know whether they are muddy?”

How often will the father repeat the question until any child reacts?

(adapted from Fagin et. al 1995)

Example: Muddy Children

Imagine three children playing together outside.
Some of them get mud on their foreheads.
Each can see the face of others but not on their own forehead.

Along comes the father: “At least one of you has mud on your forehead”.
The father then asks the following question, over and over: “Does any
of you know whether they are muddy?”

How often will the father repeat the question until any child reacts?

(adapted from Fagin et. al 1995)

Example: Muddy Children

Imagine three children playing together outside.
Some of them get mud on their foreheads.
Each can see the face of others but not on their own forehead.

Along comes the father: “At least one of you has mud on your forehead”.
The father then asks the following question, over and over: “Does any
of you know whether they are muddy?”

How often will the father repeat the question until any child reacts?

(adapted from Fagin et. al 1995)

Epistemic Logic
Syntax
ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ

Kripke Models
M = (W ,Ri ,Val) where
I W set of worlds
I Ri ⊆ W ×W indistinguishability
I Val : W → P(P) valuation

Semantics
M,w � Kiϕ iff wRiv impliesM, v � ϕ

You know ϕ iff all the worlds you consider make ϕ true.

Example

w1
p

w2

Bob

¬KBobp
KAlicep

Epistemic Logic
Syntax
ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ

Kripke Models
M = (W ,Ri ,Val) where
I W set of worlds
I Ri ⊆ W ×W indistinguishability
I Val : W → P(P) valuation

Semantics
M,w � Kiϕ iff wRiv impliesM, v � ϕ

You know ϕ iff all the worlds you consider make ϕ true.

Example

w1
p

w2

Bob

¬KBobp
KAlicep

Public Announcement Logic

Add a new dynamic operator:

M,w � [!ϕ]ψ iff M,w � ϕ impliesMϕ,w � ψ

whereMϕ is a new model, keeping only the worlds were ϕ is true.
I originally by Plaza in 1989
I well-known axomatization via reduction axioms
I same expressivity as EL

Examples

[! p ∧ q]Kip is valid.

Public Announcement Logic

Add a new dynamic operator:

M,w � [!ϕ]ψ iff M,w � ϕ impliesMϕ,w � ψ

whereMϕ is a new model, keeping only the worlds were ϕ is true.
I originally by Plaza in 1989
I well-known axomatization via reduction axioms
I same expressivity as EL

Examples

[! p ∧ q]Kip is valid.

Muddy Children with Kripke Models

Let pi denote that child i is muddy.

p1, p2, p3 p1, p2

p1, p3 p1

p2, p3 p2

p3 ∅

1 1

1 1
2 2

2 2
3

3

3

3

“At least
one of you
is muddy!”
[! p1∨p2∨p3]
⇒

p1, p2, p3 p1, p2

p1, p3 p1

p2, p3 p2

p3

1 1

1
2 2

2
3

3

3

Muddy Children with Kripke Models

Let pi denote that child i is muddy.

p1, p2, p3 p1, p2

p1, p3 p1

p2, p3 p2

p3 ∅

1 1

1 1
2 2

2 2
3

3

3

3

“At least
one of you
is muddy!”
[! p1∨p2∨p3]
⇒

p1, p2, p3 p1, p2

p1, p3 p1

p2, p3 p2

p3

1 1

1
2 2

2
3

3

3

Muddy Children with Kripke Models

Let pi denote that child i is muddy.

p1, p2, p3 p1, p2

p1, p3 p1

p2, p3 p2

p3 ∅

1 1

1 1
2 2

2 2
3

3

3

3

“At least
one of you
is muddy!”
[! p1∨p2∨p3]
⇒

p1, p2, p3 p1, p2

p1, p3 p1

p2, p3 p2

p3

1 1

1
2 2

2
3

3

3

Muddy Children with Kripke Models II

p1, p2, p3 p1, p2

p1, p3 p1

p2, p3 p2

p3

1 1

1
2 2

2
3

3

3

“Nobody knows
whether they
are muddy!”
[! ∧i ¬K ?

i pi]
⇒

p1, p2, p3 p1, p2

p1, p3

p2, p31

2

3

Muddy Children with Kripke Models II

p1, p2, p3 p1, p2

p1, p3 p1

p2, p3 p2

p3

1 1

1
2 2

2
3

3

3

“Nobody knows
whether they
are muddy!”
[! ∧i ¬K ?

i pi]
⇒

p1, p2, p3 p1, p2

p1, p3

p2, p31

2

3

Muddy Children with Kripke Models II

p1, p2, p3 p1, p2

p1, p3 p1

p2, p3 p2

p3

1 1

1
2 2

2
3

3

3

“Nobody knows
whether they
are muddy!”
[! ∧i ¬K ?

i pi]
⇒

p1, p2, p3 p1, p2

p1, p3

p2, p31

2

3

Muddy Children with Kripke Models III

p1, p2, p3 p1, p2

p1, p3

p2, p31

2

3

“Nobody knows
whether they
are muddy!”
[! ∧i ¬K ?

i pi]
⇒

p1, p2, p3

Hence, in the original modelM at the world w where all three are muddy:

M,w � [! ∨i pi][!
∧

i ¬K ?
i pi][!

∧
i ¬K ?

i pi]C(p1 ∧ p2 ∧ p3)

Muddy Children with Kripke Models III

p1, p2, p3 p1, p2

p1, p3

p2, p31

2

3 “Nobody knows
whether they
are muddy!”
[! ∧i ¬K ?

i pi]
⇒

p1, p2, p3

Hence, in the original modelM at the world w where all three are muddy:

M,w � [! ∨i pi][!
∧

i ¬K ?
i pi][!

∧
i ¬K ?

i pi]C(p1 ∧ p2 ∧ p3)

Muddy Children with Kripke Models III

p1, p2, p3 p1, p2

p1, p3

p2, p31

2

3 “Nobody knows
whether they
are muddy!”
[! ∧i ¬K ?

i pi]
⇒

p1, p2, p3

Hence, in the original modelM at the world w where all three are muddy:

M,w � [! ∨i pi][!
∧

i ¬K ?
i pi][!

∧
i ¬K ?

i pi]C(p1 ∧ p2 ∧ p3)

Muddy Children with Kripke Models III

p1, p2, p3 p1, p2

p1, p3

p2, p31

2

3 “Nobody knows
whether they
are muddy!”
[! ∧i ¬K ?

i pi]
⇒

p1, p2, p3

Hence, in the original modelM at the world w where all three are muddy:

M,w � [! ∨i pi][!
∧

i ¬K ?
i pi][!

∧
i ¬K ?

i pi]C(p1 ∧ p2 ∧ p3)

Dynamic Epistemic Logic: Action Models
Action Models

A = (A,R, pre, post) where

I A set of atomic events
I Ri ⊆ A× A indistinguishability relation
I pre : A→ L precondition function
I post : A→ P → L postcondition function

Product Update

M×A := (W new,Rnew
i ,Valnew) where

I W new := {(w , a) ∈W × A | M,w � pre(a)}
I Rnew

i := {((w , a), (v , b)) | Riwv and Riab}
I Valnew((w , a)) := {p ∈ V | M,w � posta(p)}

M, v � [A, a]ϕ iff M,w � pre(a) implies (M×A, (w , a)) � ϕ

(Baltag, Moss & Solecki, 1998) and (van Benthem, van Eijck & Kooi, 2006)

Dynamic Epistemic Logic: Action Models
Action Models

A = (A,R, pre, post) where

I A set of atomic events
I Ri ⊆ A× A indistinguishability relation
I pre : A→ L precondition function
I post : A→ P → L postcondition function

Product Update

M×A := (W new,Rnew
i ,Valnew) where

I W new := {(w , a) ∈W × A | M,w � pre(a)}
I Rnew

i := {((w , a), (v , b)) | Riwv and Riab}
I Valnew((w , a)) := {p ∈ V | M,w � posta(p)}

M, v � [A, a]ϕ iff M,w � pre(a) implies (M×A, (w , a)) � ϕ

(Baltag, Moss & Solecki, 1998) and (van Benthem, van Eijck & Kooi, 2006)

DEL Example: Coin Flip hidden from a

w
pa,b ×

a1
?>

p := ⊥

a2
?>

p := >

a,b

a,b

a =

(w , a1)
¬p

(w , a2)
p

a,b

a,b

a

M,w � Kap ∧ Kbp ∧ [A, a1](Kb¬p ∧ ¬Ka¬p)

Two Perspectives: Dynamic / Temporal

I Dynamic Epistemic Logic: events are model changing operations

I Temporal Logics: time is a relation inside the model

DEL Applications

Fun puzzles:
I Russian Cards
I Muddy Children
I Sum and Product
I Drinking Logicians
I The Hardest Logic Puzzle Ever (Knights & Knaves)

But also more serious things:
I Epistemic Planning
I Protocol Verification
I Theory of Mind: Sally and Anne

Model Checking

Model Checking – The Task

Given a model and a formula, does it hold in the model?

M,w � ϕ or M,w 2 ϕ

???

In the case of DEL, ϕ might contain dynamic operators!

Agents and Formulas

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ

type Prop = Int

type Ag = String

data Form = P Prop | Neg Form | Con Form Form | K Ag Form
deriving (Eq,Ord,Show)

dis :: Form -> Form -> Form
dis f g = Neg (Con (Neg f) (Neg g))

Models

M = (W ,R ,V)

type World = Int

type Relations = [(Ag, [[World]])]

type Valuation = [(World, [Prop])]

data Model = Mo { worlds :: [World]
, rel :: Relations
, val :: Valuation }

deriving (Eq,Ord,Show)

Note: We assume equivalence relations and encode them as [[World]].

Semantics
Idea: translate the semantics definition of ‘�’ to a recursive function.

M,w � p :⇐⇒ p ∈ V (w)
M,w � ¬ϕ :⇐⇒ notM,w � ϕ
M,w � ϕ ∧ ψ :⇐⇒ M,w � ϕ andM,w � ψ
M,w � Kiϕ :⇐⇒ M,w ′ � ϕ for all w ′ such that Riww ′

isTrue :: (Model,World) -> Form -> Bool
isTrue (m,w) (P p) = p `elem` (val m ! w)
isTrue (m,w) (Neg f) = not (isTrue (m,w) f)
isTrue (m,w) (Con f g) = isTrue (m,w) f && isTrue (m,w) g
isTrue (m,w) (K i f) =

and [isTrue (m,w') f | w' <- (rel m ! i) ? w]

Muddy Children in Haskell
8 worlds, 3 agents, 3 atomic propositions.
muddy :: Model
muddy = Mo

[0,1,2,3,4,5,6,7]
[("1",[[0,4],[2,6],[3,7],[1,5]])
,("2",[[0,2],[4,6],[5,7],[1,3]])
,("3",[[0,1],[4,5],[6,7],[2,3]])]
[(0,[])
,(1,[3])
,(2,[2])
,(3,[2, 3])
,(4,[1])
,(5,[1, 3])
,(6,[1, 2])
,(7,[1, 2, 3])]

Muddy Children in Haskell: examples

L5> isTrue (muddy,6) (Con (P 1) (P 2))
True
L5> isTrue (muddy,6) (K "1" (P 1))
False
L5> isTrue (muddy,6) (K "1" (P 2))
True
L5> isTrue (muddy,6) (K "3" (Con (P 1) (P 2)))
True
L5> isTrue (muddy,6) (K "3" (Neg (K "2" (P 2))))
True

Muddy Children in Haskell: father

p1 ∨ (p2 ∨ p3)

father :: Form
father = dis (P 1) (dis (P 2) (P 3))

λ> map (\w->(w,isTrue (muddy, w) father)) (worlds muddy)
[(0,False),(1,True),(2,True),(3,True)
,(4,True),(5,True),(6,True),(7,True)]

Making Announcements

Exercise for you!

announce :: Model -> Form -> Model
announce oldModel f = Mo newWorlds newRel newVal where

newWorlds = undefined
newRel = undefined
newVal = undefined

muddy2 :: Model
muddy2 = announce muddy father

Limits of explicit model checking
For large models (~ 1000 worlds) the explicit approach becomes really slow.
Example: runtime in seconds for n Muddy Children (i.e. 2n worlds)::

n DEMO-S5
3 0.000
6 0.012
8 0.273
10 8.424
11 46.530
12 228.055
13 1215.474

Symbolic Model Checking S5 PAL

Symbolic Model Checking: General Idea

2×

3×

I Can we represent models in a more compact way?

. . . such that we can still interpret all formulas?

Yes! There is symbolic model checking for many temporal logics like LTL and
CTL (Clarke et al. 1999) and also epistemic logics (Su et al. 2007).

Here: How to do it for DEL.

1. Represent models symbolically with knowledge structures.
2. Translate EL and PAL to locally equivalent boolean formulas.
3. Use Binary Decision Diagrams to speed it up.

Symbolic Model Checking: General Idea

2×

3×

I Can we represent models in a more compact way?
. . . such that we can still interpret all formulas?

Yes! There is symbolic model checking for many temporal logics like LTL and
CTL (Clarke et al. 1999) and also epistemic logics (Su et al. 2007).

Here: How to do it for DEL.

1. Represent models symbolically with knowledge structures.
2. Translate EL and PAL to locally equivalent boolean formulas.
3. Use Binary Decision Diagrams to speed it up.

Symbolic Model Checking: General Idea

2×

3×

I Can we represent models in a more compact way?
. . . such that we can still interpret all formulas?

Yes! There is symbolic model checking for many temporal logics like LTL and
CTL (Clarke et al. 1999) and also epistemic logics (Su et al. 2007).

Here: How to do it for DEL.

1. Represent models symbolically with knowledge structures.
2. Translate EL and PAL to locally equivalent boolean formulas.
3. Use Binary Decision Diagrams to speed it up.

Symbolic Model Checking: General Idea

2×

3×

I Can we represent models in a more compact way?
. . . such that we can still interpret all formulas?

Yes! There is symbolic model checking for many temporal logics like LTL and
CTL (Clarke et al. 1999) and also epistemic logics (Su et al. 2007).

Here: How to do it for DEL.

1. Represent models symbolically with knowledge structures.
2. Translate EL and PAL to locally equivalent boolean formulas.
3. Use Binary Decision Diagrams to speed it up.

Symbolic Model Checking: General Idea in Haskell
Instead of listing all possible worlds explicitly . . .

KrM
[0,1,2,3]
[("Alice",[[0,1],[2,3]])
, ("Bob" ,[[0,2],[1,3]])]
[(0,[(P 1,False),(P 2,False)])
, (1,[(P 1,False),(P 2,True)])
, (2,[(P 1,True),(P 2,False)])
, (3,[(P 1,True),(P 2,True)])]

. . . we list atomic propositions and who can observe them:

KnS [P 1,P 2] (boolBddOf Top) [("Alice",[P 1]), ("Bob",[P 2])]

Knowledge Structures

Knowledge Structures
F = (V , θ,O1, . . . ,On) where
I V Vocabulary set of atoms
I θ ∈ LB(V) State Law boolean formula V
I Oi ⊆ V Observables atoms seen by i

The set of states is {s ⊆ V | s � θ}.
We call (F , s) where s is a state a scenario.

2×

3×

The world is everything that is the case.
Die Welt ist alles, was der Fall ist.

Ludwig Wittgenstein

Knowledge Structures

Knowledge Structures
F = (V , θ,O1, . . . ,On) where
I V Vocabulary set of atoms
I θ ∈ LB(V) State Law boolean formula V
I Oi ⊆ V Observables atoms seen by i

The set of states is {s ⊆ V | s � θ}.
We call (F , s) where s is a state a scenario.

2×

3×

The world is everything that is the case.
Die Welt ist alles, was der Fall ist.

Ludwig Wittgenstein

Knowledge Structures

Knowledge Structures
F = (V , θ,O1, . . . ,On) where
I V Vocabulary set of atoms
I θ ∈ LB(V) State Law boolean formula V
I Oi ⊆ V Observables atoms seen by i

The set of states is {s ⊆ V | s � θ}.
We call (F , s) where s is a state a scenario.

2×

3×

The world is everything that is the case.
Die Welt ist alles, was der Fall ist.

Ludwig Wittgenstein

Knowledge Structures

Knowledge Structures
F = (V , θ,O1, . . . ,On) where
I V Vocabulary set of atoms
I θ ∈ LB(V) State Law boolean formula V
I Oi ⊆ V Observables atoms seen by i

The set of states is {s ⊆ V | s � θ}.
We call (F , s) where s is a state a scenario.

2×

3×

The world is everything that is the case.
Die Welt ist alles, was der Fall ist.

Ludwig Wittgenstein

Symbolic Semantics on Knowledge Structures
Easy:
I (F , s) |= p iff p ∈ s.
I (F , s) |= ¬ϕ iff not (F , s) |= ϕ
I (F , s) |= ϕ ∧ ψ iff (F , s) |= ϕ and (F , s) |= ψ

I know something iff it follows from my observations:
I (F , s) |= Kiϕ iff for all s ′ � θ, if s ∩ Oi = s ′ ∩ Oi , then (F , s ′) |= ϕ.

Updates restrict the set of states:
I (F , s) |= [!ψ]ϕ iff (F , s) |= ψ implies (Fψ, s) |= ϕ where ‖ψ‖F will be

defined later and

Fψ := (V , θ ∧ ‖ψ‖F ,O1, · · · ,On)

Knowledge Structures

Example
F = (V = {p}, θ = >,O1 = {p},O2 = ∅)

States: ∅, {p}

Some facts:
I F ,∅ � ¬p ∧ K1¬p ∧ ¬K2¬p
I F , {p} � p ∧ K1p ∧ ¬K2p
I F , {p} � [!p]K2p

because Fp = (V = {p}, θ = p,O1 = {p},O2 = ∅)

Implementation of Knowledge Structures and Semantics
data KnowStruct = KnS [Prp] Bdd [(Agent,[Prp])]
type KnState = [Prp]
type KnowScene = (KnowStruct,KnState)

eval :: KnowScene -> Form -> Bool
eval _ Top = True
eval (_,s) (PrpF p) = p `elem` s
eval (kns,s) (Neg form) = not $ eval (kns,s) form
eval (kns,s) (Conj forms) = all (eval (kns,s)) forms
eval scn (Impl f g) = not (eval scn f) || eval scn g
eval (kns@(KnS _ _ obs),s) (K i form) = all (\s' -> eval (kns,s') form) theres where

theres = filter (\s' -> seteq (s' `intersect` oi) (s `intersect` oi)) (statesOf kns)
oi = obs ! i

eval scn (PubAnnounce form1 form2) =
not (eval scn form1) || eval (update scn form1) form2

Only parts of the code will be here on the slides. See https://github.com/jrclogic/SMCDEL/blob/master/src/SMCDEL/Symbolic/S5.hs

https://github.com/jrclogic/SMCDEL/blob/master/src/SMCDEL/Symbolic/S5.hs

From Knowledge Structures to Kripke Models (easy direction)

Theorem
For every knowledge structure there is an
equivalent S5 Kripke Model.

2×

3×
≡

Example

F = (V = {p, q}, θ = p ∨ q, OAlice = {p}, OBob = {q})

is equivalent to

p p, q q
Alice Bob

From Knowledge Structures to Kripke Models (easy direction)

Theorem
For every knowledge structure there is an
equivalent S5 Kripke Model.

2×

3×
≡

Example

F = (V = {p, q}, θ = p ∨ q, OAlice = {p}, OBob = {q})

is equivalent to

p p, q q
Alice Bob

Implementation: KNS → Kripke
Let W := {s ⊆ V | s � θ}, V = id and Rist iff s ∩ Oi = t ∩ Oi .
knsToKripkeWithG :: KnowStruct -> (KripkeModelS5, StateMap)
knsToKripkeWithG kns@(KnS ps _ obs) =

(KrMS5 worlds rel val, g) where
g w = statesOf kns !! w
lav = zip (statesOf kns) [0..(length (statesOf kns)-1)]
val = map (\(s,n) -> (n,state2kripkeass s)) lav where

state2kripkeass s = map (\p -> (p, p `elem` s)) ps
rel = [(i,rfor i) | i <- map fst obs]
rfor i = map (map snd) (groupBy (\ (x,_) (y,_) -> x==y) (sort pairs))
where pairs = map (\s -> (s `intersect` (obs ! i), lav ! s))

(statesOf kns)
worlds = map snd lav

See https://github.com/jrclogic/SMCDEL/blob/master/src/SMCDEL/Translations/S5.hs

https://github.com/jrclogic/SMCDEL/blob/master/src/SMCDEL/Translations/S5.hs

From Kripke Models to Knowledge Structures (tricky direction)

Theorem: For every S5 Kripke ModelM there is an equivalent knowledge
structure F such thatM,w � ϕ iff F , sw � ϕ.

Proof. Problematic cases look like this:

2

1
p

0
p

Alice

Alice

Alice

Bob

From Kripke Models to Knowledge Structures (tricky direction)

Theorem: For every S5 Kripke ModelM there is an equivalent knowledge
structure F such thatM,w � ϕ iff F , sw � ϕ.

Proof. Problematic cases look like this:

2

1
p

0
p

Alice

Alice

Alice

Bob

From Kripke Models to Knowledge Structures

Proof. (continued)

2

1
p

0
p

Alice

Alice

Alice

Bob

Trick: Add propositions to distinguish all equivalence classes.

From Kripke Models to Knowledge Structures
Proof. (continued)

2

1
p

0
p

Alice

Alice

Alice

Bob

is equivalent to

(V = {p, p2}, θ = p2 → p, OAlice = ∅, OBob = {p2})

actual state: {p, p2}

�

Implementation: Kripke → KNS

kripkeToKnsWithG :: KripkeModelS5 -> (KnowStruct, StateMap)
kripkeToKnsWithG m@(KrMS5 worlds rel val) = (KnS ps law obs, g) where

v = vocabOf m
ags = map fst rel
newpstart = fromEnum $ freshp v -- start counting new propositions here
amount i = ceiling (logBase 2 (fromIntegral $ length (rel ! i)) :: Float) -- = |O_i|
newpstep = maximum [amount i | i <- ags]
newps i = map (\k -> P (newpstart + (newpstep * inum) +k)) [0..(amount i - 1)] -- O_i

where (Just inum) = elemIndex i (map fst rel)
copyrel i = zip (rel ! i) (powerset (newps i)) -- label equiv.classes with P(O_i)
gag i w = snd $ head $ filter (\(ws,_) -> w `elem` ws) (copyrel i)
g w = filter (apply (val ! w)) v ++ concat [gag i w | i <- ags]
ps = v ++ concat [newps i | i <- ags]
law = disSet [booloutof (g w) ps | w <- worlds]
obs = [(i,newps i) | i<- ags]

So what, Kripke Models and knowledge structures are the same?!

Everything is boolean!

Definition

Given a knowledge structure F = (V , θ,O),
we define a local translation from epistemic to boolean formulas:
I ‖p‖F := p
I ‖¬ϕ‖F := ¬‖ϕ‖F
I ‖ϕ1 ∧ ϕ2‖F := ‖ϕ1‖F ∧ ‖ϕ2‖F
I ‖Kiϕ‖F :=

∀(V r Oi)(θ → ‖ϕ‖F)

where boolean quantification is defined by substitution:
∀pϕ := [p/>]ϕ ∧ [p/⊥]ϕ

Example: ∀p(p ∨ q) = (> ∨ q) ∧ (⊥ ∨ q) ≡ > ∧ q ≡ q

Everything is boolean!

Definition

Given a knowledge structure F = (V , θ,O),
we define a local translation from epistemic to boolean formulas:
I ‖p‖F := p
I ‖¬ϕ‖F := ¬‖ϕ‖F
I ‖ϕ1 ∧ ϕ2‖F := ‖ϕ1‖F ∧ ‖ϕ2‖F
I ‖Kiϕ‖F :=

∀(V r Oi)(θ → ‖ϕ‖F)

where boolean quantification is defined by substitution:
∀pϕ := [p/>]ϕ ∧ [p/⊥]ϕ

Example: ∀p(p ∨ q) = (> ∨ q) ∧ (⊥ ∨ q) ≡ > ∧ q ≡ q

Everything is boolean!

Definition

Given a knowledge structure F = (V , θ,O),
we define a local translation from epistemic to boolean formulas:
I ‖p‖F := p
I ‖¬ϕ‖F := ¬‖ϕ‖F
I ‖ϕ1 ∧ ϕ2‖F := ‖ϕ1‖F ∧ ‖ϕ2‖F
I ‖Kiϕ‖F := ∀(V r Oi)(θ → ‖ϕ‖F)

where boolean quantification is defined by substitution:
∀pϕ := [p/>]ϕ ∧ [p/⊥]ϕ

Example: ∀p(p ∨ q) = (> ∨ q) ∧ (⊥ ∨ q) ≡ > ∧ q ≡ q

Announcements on Knowledge Structures

To announce a formula, add its boolean equivalent to the state law.

Consider a knowledge structure F = (V , θ,O).

We define:

F , s � [!ϕ]ψ iff F , s � ϕ implies (V , θ ∧ ‖ϕ‖F ,O), s � ψ.

Reducing DEL model checking to Boolean evaluation

Theorem

For all scenarios (F , s) and all formulas ϕ:

F , s � ϕ ⇐⇒ s � ‖ϕ‖F

But why is it useful to go from DEL to boolean formulas?

Reducing DEL model checking to Boolean evaluation

Theorem

For all scenarios (F , s) and all formulas ϕ:

F , s � ϕ ⇐⇒ s � ‖ϕ‖F

But why is it useful to go from DEL to boolean formulas?

Binary Decision Diagrams

BDD Example

BDD Example

Truth Tables are dead, long live trees
Definition: A Binary Decision Diagram for the variables V is a directed acyclic
graph where non-terminal nodes are from V with two outgoing edges and
terminal nodes are > or ⊥.
I All boolean functions can be represented like this.
I Ordered: Variables in a given order, maximally once.
I Reduced: No redundancy, identify isomorphic subgraphs.
I By “BDD” we always mean an ordered and reduced BDD.

1 10

3

2

3 3

111

2

1

0

3

0

1

2

3

10

Read the classic Bryant 1986 for more details!

BDD Magic from 1986
How long do you need to compare two formulas?

p3 ∨ ¬(p1 → p2) ??? ¬(p1 ∧ ¬p2)→ p3

On the right are is their BDDs.

This was not an accident, BDDs are canonical.

Theorem
ϕ ≡ ψ ⇐⇒ BDD(ϕ) = BDD(ψ)

Equivalence checks are free and we can quickly get BDD(¬ϕ), BDD(ϕ ∧ ψ),
etc.
Randal E. Bryant (1986): Graph-Based Algorithms for Boolean Function Manipulation https://doi.org/bnrh63

https://doi.org/bnrh63

BDD Magic from 1986
How long do you need to compare two formulas?

p3 ∨ ¬(p1 → p2) ??? ¬(p1 ∧ ¬p2)→ p3

On the right are is their BDDs.

This was not an accident, BDDs are canonical.

Theorem
ϕ ≡ ψ ⇐⇒ BDD(ϕ) = BDD(ψ)

Equivalence checks are free and we can quickly get BDD(¬ϕ), BDD(ϕ ∧ ψ),
etc.
Randal E. Bryant (1986): Graph-Based Algorithms for Boolean Function Manipulation https://doi.org/bnrh63

https://doi.org/bnrh63

BDD Magic from 1986
How long do you need to compare two formulas?

p3 ∨ ¬(p1 → p2) ??? ¬(p1 ∧ ¬p2)→ p3

On the right are is their BDDs.

This was not an accident, BDDs are canonical.

Theorem
ϕ ≡ ψ ⇐⇒ BDD(ϕ) = BDD(ψ)

Equivalence checks are free and we can quickly get BDD(¬ϕ), BDD(ϕ ∧ ψ),
etc.

Randal E. Bryant (1986): Graph-Based Algorithms for Boolean Function Manipulation https://doi.org/bnrh63

https://doi.org/bnrh63

BDD Magic from 1986
How long do you need to compare two formulas?

p3 ∨ ¬(p1 → p2) ??? ¬(p1 ∧ ¬p2)→ p3

On the right are is their BDDs.

This was not an accident, BDDs are canonical.

Theorem
ϕ ≡ ψ ⇐⇒ BDD(ϕ) = BDD(ψ)

Equivalence checks are free and we can quickly get BDD(¬ϕ), BDD(ϕ ∧ ψ),
etc.
Randal E. Bryant (1986): Graph-Based Algorithms for Boolean Function Manipulation https://doi.org/bnrh63

https://doi.org/bnrh63

Implementation: Translation to BDDs
import Data.HasCacBDD -- (var,neg,conSet,forallSet,...)

bddOf :: KnowStruct -> Form -> Bdd
bddOf _ Top = top
bddOf _ (PrpF (P n)) = var n
bddOf kns (Neg form) = neg $ bddOf kns form
bddOf kns (Conj forms) = conSet $ map (bddOf kns) forms
bddOf kns (Impl f g) = imp (bddOf kns f) (bddOf kns g)
bddOf kns@(KnS allprops lawbdd obs) (K i form) =

forallSet otherps (imp lawbdd (bddOf kns form)) where
otherps = map (\(P n) -> n) $ allprops \\ obs ! i

bddOf kns (PubAnnounce form1 form2) =
imp (bddOf kns form1) (bddOf (update kns form1) form2)

See https://github.com/jrclogic/SMCDEL/blob/master/src/SMCDEL/Symbolic/S5.hs

https://github.com/jrclogic/SMCDEL/blob/master/src/SMCDEL/Symbolic/S5.hs

Putting it all together

To model check whether F , s � ϕ . . .

1. Translate ϕ to a BDD with respect to F .
2. Restrict the BDD to s.
3. Return the resulting constant.

evalViaBdd :: KnowScene -> Form -> Bool
evalViaBdd (kns,s) f =

evaluateFun (bddOf kns f) (\n -> P n `elem` s)

Examples and Benchmarks

Symbolic Muddy Children

Initial knowledge structure:

F = ({p1, p2, p3},>,O1 = {p2, p3},O2 = {p1, p3},O3 = {p1, p2})

After the third announcement the children know their own state:

ϕ = [!(p1 ∨ p2 ∨ p3)][!
∧
i
¬(Kipi ∨ Ki¬pi)][!

∧
i
¬(Kipi ∨ Ki¬pi)](

∧
i

(Kipi))

Symbolic Example: Muddy Children I

F0 =

V = {p1, p2, p3}, θ0 = >,
O1 = {p2, p3}
O2 = {p1, p3}
O3 = {p1, p2}

⇓ “At least one of you is muddy.”

F1 =

V = {p1, p2, p3}, θ1 = (p1 ∨ p2 ∨ p3),
O1 = {p2, p3}
O2 = {p1, p3}
O3 = {p1, p2}

Symbolic Example: Muddy Children I

F0 =

V = {p1, p2, p3}, θ0 = >,
O1 = {p2, p3}
O2 = {p1, p3}
O3 = {p1, p2}

⇓ “At least one of you is muddy.”

F1 =

V = {p1, p2, p3}, θ1 = (p1 ∨ p2 ∨ p3),
O1 = {p2, p3}
O2 = {p1, p3}
O3 = {p1, p2}

Symbolic Example: Muddy Children II
In the actual implementation, we use a BDD for θ1 = p1 ∨ p2 ∨ p3, not a
formula:

F1 =

V = {p1, p2, p3}, θ1 =

p1

p2

p3

⊥ >

,
O1 = {p2, p3}
O2 = {p1, p3}
O3 = {p1, p2}

“Do you know if you are muddy?” . . . Nobody reacts.

This is an announcement of ∧i∈I(¬(Kipi ∨ Ki¬pi)).

Symbolic Example: Muddy Children II
In the actual implementation, we use a BDD for θ1 = p1 ∨ p2 ∨ p3, not a
formula:

F1 =

V = {p1, p2, p3}, θ1 =

p1

p2

p3

⊥ >

,
O1 = {p2, p3}
O2 = {p1, p3}
O3 = {p1, p2}

“Do you know if you are muddy?” . . . Nobody reacts.

This is an announcement of ∧i∈I(¬(Kipi ∨ Ki¬pi)).

Symbolic Example: Muddy Children III
Wanted: Boolean equivalent of ∧i∈I(¬(Kipi ∨ Ki¬pi)).

‖K1p1‖F1 ≡ ∀(V r O1)(θ1 → ‖p1‖F1)
≡ ∀p1((p1 ∨ p2 ∨ p3)→ p1)
≡ ((> ∨ p2 ∨ p3)→ >) ∧ ((⊥ ∨ p2 ∨ p3)→ ⊥)
≡ ¬(p2 ∨ p3)

‖K1¬p1‖F1 ≡ ∀(V r O1)(θ1 → ‖¬p1‖F1)
≡ ∀p1((p1 ∨ p2 ∨ p3)→ ¬p1)
≡ ((> ∨ p2 ∨ p3)→ ¬>) ∧ ((⊥ ∨ p2 ∨ p3)→ ¬⊥)
≡ ⊥

and analogous for K2p2, K2¬p2, K3p3 and K3¬p3 . . .

Symbolic Example: Muddy Children III
Wanted: Boolean equivalent of ∧i∈I(¬(Kipi ∨ Ki¬pi)).

‖K1p1‖F1 ≡ ∀(V r O1)(θ1 → ‖p1‖F1)
≡ ∀p1((p1 ∨ p2 ∨ p3)→ p1)
≡ ((> ∨ p2 ∨ p3)→ >) ∧ ((⊥ ∨ p2 ∨ p3)→ ⊥)
≡ ¬(p2 ∨ p3)

‖K1¬p1‖F1 ≡ ∀(V r O1)(θ1 → ‖¬p1‖F1)
≡ ∀p1((p1 ∨ p2 ∨ p3)→ ¬p1)
≡ ((> ∨ p2 ∨ p3)→ ¬>) ∧ ((⊥ ∨ p2 ∨ p3)→ ¬⊥)
≡ ⊥

and analogous for K2p2, K2¬p2, K3p3 and K3¬p3 . . .

Example: Symbolic Muddy Children III

. . . together we get:∥∥∥∥∥∥
∧
i∈I

(¬(Kipi ∨ Ki¬pi))
∥∥∥∥∥∥

F1

≡ (p2 ∨ p3) ∧ (p1 ∨ p3) ∧ (p1 ∨ p2)

“Nobody knows their own state.”

is locally equivalent to

“At least two are muddy.”

Example: Symbolic Muddy Children III

. . . together we get:∥∥∥∥∥∥
∧
i∈I

(¬(Kipi ∨ Ki¬pi))
∥∥∥∥∥∥

F1

≡ (p2 ∨ p3) ∧ (p1 ∨ p3) ∧ (p1 ∨ p2)

“Nobody knows their own state.”

is locally equivalent to

“At least two are muddy.”

Explicit and Symbolic Muddy Children
p1, p2, p3 p1, p2

p1, p3 p1

p2, p3 p2

p3 ∅

1 1

1 1
2 2

2 2
3

3

3

3

p1, p2, p3 p1, p2

p1, p3 p1

p2, p3 p2

p3

1 1

1
2 2

2
3

3

3

p1, p2, p3 p1, p2

p1, p3

p2, p31

2

3
p1, p2, p3

>

p1

p2

p3

⊥ >

p1

p2 p2

p3

⊥ >

p1

p2

p3

⊥ >

Note: V = {p1, p2, p3} and O1 = {p2, p3} etc. never change.

Explicit and Symbolic Muddy Children
p1, p2, p3 p1, p2

p1, p3 p1

p2, p3 p2

p3 ∅

1 1

1 1
2 2

2 2
3

3

3

3

p1, p2, p3 p1, p2

p1, p3 p1

p2, p3 p2

p3

1 1

1
2 2

2
3

3

3

p1, p2, p3 p1, p2

p1, p3

p2, p31

2

3
p1, p2, p3

>

p1

p2

p3

⊥ >

p1

p2 p2

p3

⊥ >

p1

p2

p3

⊥ >

Note: V = {p1, p2, p3} and O1 = {p2, p3} etc. never change.

Explicit and Symbolic Muddy Children
p1, p2, p3 p1, p2

p1, p3 p1

p2, p3 p2

p3 ∅

1 1

1 1
2 2

2 2
3

3

3

3

p1, p2, p3 p1, p2

p1, p3 p1

p2, p3 p2

p3

1 1

1
2 2

2
3

3

3

p1, p2, p3 p1, p2

p1, p3

p2, p31

2

3
p1, p2, p3

>

p1

p2

p3

⊥ >

p1

p2 p2

p3

⊥ >

p1

p2

p3

⊥ >

Note: V = {p1, p2, p3} and O1 = {p2, p3} etc. never change.

Muddy Children
Runtime in seconds:

n DEMO-S5 SMCDEL
3 0.000 0.000
6 0.012 0.002
8 0.273 0.004
10 8.424 0.008
11 46.530 0.011
12 228.055 0.015
13 1215.474 0.019
20 0.078
40 0.777
60 2.563
80 6.905

How to use SMCDEL
The easy way: SMCDEL web interface at https://w4eg.de/malvin/illc/smcdelweb

VARS 1,2,3
LAW Top
OBS alice: 2,3

bob: 1,3
carol: 1,2

VALID?
[! (1|2|3)]
[! ((~ (alice knows whether 1))

& (~ (bob knows whether 2))
& (~ (carol knows whether 3)))] (1 & 2 & 3)

The hard way: import SMCDEL.Symbolic.S5 etc. Then define abbreviations and generate larger models

using Haskell. See https://github.com/jrclogic/SMCDEL/tree/master/src/SMCDEL/Examples

https://w4eg.de/malvin/illc/smcdelweb
https://github.com/jrclogic/SMCDEL/tree/master/src/SMCDEL/Examples

Beyond S5 PAL

Action Models and Product Update
Action Model: A = (A, Si , pre)

A set of actions
Si ⊆ A× A indistinguishability relation
pre : A→ L preconditions

Product Update:
M⊗A := (W ′,R ′,V ′) where
I W ′ = {(w , a) ∈ W × A | M,w � pre(a)}
I R ′

i (s, a)(t, b) iff Rist and Siab
I V ′(w , a) = V (w) no factual change

Semantics:
M,w � [A, a]ϕ iffM,w � pre(a) impliesM⊗A, (w , a) � ϕ

Knowledge Transformers
Knowledge Transformer: X = (V+, µ,O+

1 , . . . ,O+
n)

V+ New Vocabulary new propositional variables
µ Event Law a formula over V ∪ V+

O+
i ⊆ V+ Observables what can i observe?

Transformation: Given F = (V , θ,O1, . . . ,On) and
X = (V+, µ,O+

1 , . . . ,O+
n), define

F ⊗ X := (V ∪ V+, θ ∧ ||µ||F ,O1 ∪ O+
1 , . . . ,On ∪ O+

n)

Event: (X , x) where x ⊆ V+

Knowledge Transformers
Examples:
I public announcement: X = (∅, ϕ,∅,∅)
I (almost) private announcement of ϕ to a:

X = ({p}, p → ϕ,Oa = {p},Ob = ∅)

ϕ >
b

Theorem: For every S5 action model A there is a transformer X (and vice
versa) such that for every equivalentM and F :

M⊗A, (w , a) � ϕ ⇐⇒ F ⊗X , s ∪ x � ϕ

Non-S5: Belief as KD45

A crucial difference between Knowledge and Belief is Truth.

We assume Kϕ→ ϕ but in general not Bϕ→ ϕ.

⇒ Kripke Models for Belief are not reflexive.

Non-S5 Arbitrary Relations with BDDs
We can replace Oi with a BDD Ωi to describe any relation.
Trick: Use copy-propositions to describe reachable worlds.

p1

p2

p1, p2

p1

p′
1

p2

p′
2

> ⊥

NOTE: this examples has a mistake, see https://malv.in/phdthesis/gattinger-thesis-errata.pdf

For every agent we replace Oi with a BDD Ωi .

Now translate �iϕ to: ∀~p′(θ′ → (Ωi (~p, ~p′) → (‖ϕ‖F)′))

https://malv.in/phdthesis/gattinger-thesis-errata.pdf

Summary

Summary

I Representation matters!
I Model Checking: decide whetherM,w � ϕ.
I Binary Decision Diagrams: a data structure for boolean formulas functions.
I Symbolic structures can encode Kripke models for faster model checking.

I Further topics:
I non-equivalence relations: K instead of S5
I beyond public announcements: action models
I alternative: “succinct” models using mental programs
I Epistemic Planning (see Bolander, Schwarzentruber, etc.)
I . . .

Summary

I Representation matters!
I Model Checking: decide whetherM,w � ϕ.
I Binary Decision Diagrams: a data structure for boolean formulas functions.
I Symbolic structures can encode Kripke models for faster model checking.

I Further topics:
I non-equivalence relations: K instead of S5
I beyond public announcements: action models
I alternative: “succinct” models using mental programs
I Epistemic Planning (see Bolander, Schwarzentruber, etc.)
I . . .

References
I https://github.com/jrclogic/SMCDEL

(Literate Haskell documentation in SMCDEL.pdf.)

I Symbolic Model Checking for Dynamic Epistemic
Logic — S5 and Beyond,
Journal of Logic and Computation, 2017.
https://doi.org/10.1093/logcom/exx038

I New Directions in Model Checking Dynamic
Epistemic Logic, PhD thesis, Amsterdam, 2018.
https://malv.in/phdthesis/

I Towards Symbolic and Succinct Perspective Shifts,
Epistemic Planning workshop at ICAPS 2020.
https://doi.org/10.5281/zenodo.4767546

New Directions in Model Checking
Dynamic Epistemic Logic

Malvin Gattinger

https://github.com/jrclogic/SMCDEL
https://doi.org/10.1093/logcom/exx038
https://malv.in/phdthesis/
https://doi.org/10.5281/zenodo.4767546
https://malv.in/phdthesis

BONUS CONTENT

Russian Cards

A puzzle:
Seven cards, enumerated from 1 to 7, are distributed between Alice,
Bob and Carol. Alice and Bob both receive three cards and Carol one
card. It is common knowledge which cards exist and how many cards
each agent has. Everyone knows their own but not the others’ cards.
The goal of Alice and Bob now is to learn each others cards without
Carol learning their cards.
They are only allowed to communicate via public announcements.

Russian Cards: Solution

Alice: “My set of cards is 123, 145, 167, 247 or 356.”

Bob: “Crow has card 7.”

There are 102 such “safe announcements” which van Ditmarsch et al. (2003)
had to find and check by hand.

With symbolic model checking this takes 4 seconds.

Russian Cards: Solution

Alice: “My set of cards is 123, 145, 167, 247 or 356.”

Bob: “Crow has card 7.”

There are 102 such “safe announcements” which van Ditmarsch et al. (2003)
had to find and check by hand.

With symbolic model checking this takes 4 seconds.

Sum and Product

The puzzle from Freudenthal 1969 (translated from Dutch):
A says to S and P: I chose two numbers x , y such that 1 < x < y and
x + y ≤ 100. I will tell s = x + y to S alone, and p = xy to P alone.
These messages will stay secret. But you should try to calculate the
pair (x , y).
He does as announced. Now follows this conversation:
1. P says: I do not know it.
2. S says: I knew that.
3. P says: Now I know it.
4. S says: No I also know it.

Determine the pair (x , y).

Sum and Product: Encoding numbers
pairs :: [(Int, Int)] -- possible pairs 1<x<y, x+y<=100
pairs = [(x,y) | x<-[2..100], y<-[2..100], x<y, x+y<=100]

xProps, yProps, sProps, pProps :: [Prp]
xProps = [(P 1)..(P 7)] -- 7 propositions to label [2..100]
yProps = [(P 8)..(P 14)]
sProps = [(P 15)..(P 21)]
pProps = [(P 22)..(P (21+amount))]

where amount = ceiling (logBase 2 (50*50) :: Double)

xIs, yIs, sIs, pIs :: Int -> Form
xIs n = booloutofForm (powerset xProps !! n) xProps
yIs n = booloutofForm (powerset yProps !! n) yProps
sIs n = booloutofForm (powerset sProps !! n) sProps
pIs n = booloutofForm (powerset pProps !! n) pProps

xyAre :: (Int,Int) -> Form
xyAre (n,m) = Conj [xIs n, yIs m]

Sum and Product: Benchmark

BDDs don’t like products:

Benchmark bench-sumandproduct: RUNNING...
Benchmarking the complete run.
*** Running DEMO_S5 ***
Mo [(4,13)] [Ag 0,Ag 1] [] [(Ag 0,[[(4,13)]])

,(Ag 1,[[(4,13)]])] [(4,13)]
This took 0.964665s seconds.

*** Running SMCDEL ***
x = 4, y = 13, x+y = 17 and x*y = 52
This took 1.632393s seconds.

Dining Cryptographers

Suppose Jonathan, Patrick and Bo had a very fancy diner. The waiter
comes in and tells them that it has already been paid.
They want to find out if it was one of them or the ILLC. However, if
one of them paid, they also respect the wish of that person to stay
anonymous. That is, they do not want to know who of them paid if it
was one of them.

This puzzle was solved by David Chaum in his “Dining Cryptographers”
protocol.

SMCDEL can check the case with 160 agents (and a lot of coins) in 10 seconds.

Dining Cryptographers

Suppose Jonathan, Patrick and Bo had a very fancy diner. The waiter
comes in and tells them that it has already been paid.
They want to find out if it was one of them or the ILLC. However, if
one of them paid, they also respect the wish of that person to stay
anonymous. That is, they do not want to know who of them paid if it
was one of them.

This puzzle was solved by David Chaum in his “Dining Cryptographers”
protocol.

SMCDEL can check the case with 160 agents (and a lot of coins) in 10 seconds.

Digression: Comparing DEL and ETL

Scenarios and protocols like the Dining Dryptographers can be formalized in
temporal logics (LTL,CTLK,. . .) and in DEL.

With SMCDEL we can now also check the DEL variant quickly.

This motivates many questions:
I When are two formalizations of the same protocol equivalent?

[@vB2009merging, @ditmarsch2013connecting]
I Which formalizations are more intuitive?
I What is faster
I for your computer to model check?
I for you to write down formulas?

Type Safe BDD manipulation

(This is about Belief Structures.)

Note that ϕ and ϕ′ etc. are formulas in different languages, but we can use the
same type Form and Bdd in Haskell for it.

This will lead to disaster.

The following type RelBDD is in fact just a newtype of Bdd. Tags (aka labels)
from the module Data.Tagged can be used to distinguish objects of the same
type which should not be combined or mixed. Making these differences explicit
at the type level can rule out certain mistakes already at compile time which
otherwise might only be discovered at run time or not at all.

Type Safe BDD manipulation

(This is about Belief Structures.)

Note that ϕ and ϕ′ etc. are formulas in different languages, but we can use the
same type Form and Bdd in Haskell for it.

This will lead to disaster.

The following type RelBDD is in fact just a newtype of Bdd. Tags (aka labels)
from the module Data.Tagged can be used to distinguish objects of the same
type which should not be combined or mixed. Making these differences explicit
at the type level can rule out certain mistakes already at compile time which
otherwise might only be discovered at run time or not at all.

Type Safe BDD manipulation (continued)
The use case here is to distinguish BDDs for formulas over different
vocabularies, i.e.~sets of atomic propositions. For example, the BDD of p1 in
the standard vocabulary V uses the variable 1, but in the vocabulary of V ∪ V ′

the proposition p1 is mapped to variable 3 while p′
1 is mapped to 4. This is

implemented in the mv and cp functions above which we are now going to lift
to BDDs.

If RelBDD and Bdd were synonyms (as it was the case in a previous version of
this file) then it would be up to us to ensure that BDDs meant for different
vocabularies would not be combined. Taking the conjunction of the BDD of p
in V and the BDD of p2 in V ∪ V ′ just makes no sense — one BDD first needs
to be translated to the vocabulary of the other — but as long as the types
match Haskell would happily generate the chaotic conjunction.

Type Safe BDD manipulation (continued continued)

To catch these problems at compile time we now distinguish Bdd and
RelBDD@. In principle this could be done with a simple newtype, but looking
ahead we will need even more different vocabularies (for factual change and
symbolic bisimulations). It would become tedious to write the same instances of
Functor, Applicative and Monad each time we add a new vocabulary.
Fortunately, Data.Tagged already provides us with an instance of Functor for
Tagged t for any type t.

Type Safe BDD manipulation (continued continued continued)
Also note that Dubbel is an empty type, isomorphic to ().
data Dubbel
type RelBDD = Tagged Dubbel Bdd

totalRelBdd, emptyRelBdd :: RelBDD
totalRelBdd = pure $ boolBddOf Top
emptyRelBdd = pure $ boolBddOf Bot

allsamebdd :: [Prp] -> RelBDD
allsamebdd ps = pure $ conSet [boolBddOf $ PrpF p `Equi` PrpF p' | (p,p') <- zip (mv ps) (cp ps)]

class TagBdd a where
tagBddEval :: [Prp] -> Tagged a Bdd -> Bool
tagBddEval truths querybdd = evaluateFun (untag querybdd) (\n -> P n `elem` truths)

instance TagBdd Dubbel

	Epistemic Logic and Public Announcement Logic
	Model Checking
	Symbolic Model Checking S5 PAL
	Binary Decision Diagrams
	Examples and Benchmarks
	Beyond S5 PAL
	Summary

