
Functional Programming for Logicians - Lecture 4
IO, Trees, Randomness

Malvin Gattinger

17 January 2022

module L4 where

import Data.Char
import System.Random

IO

Trees

Randomness

Project Practicalities

IO

Summary Lecture 3

Recall that:

I A Functor is something that we can fmap over.

I An Applicative is a Functor plus pure and <*>.

I A Monad is an Applicative plus >>=.

Examples: Maybe, [] and IO are monads!

Real World Haskell ∗

Here are some useful standard IO functions:

λ> :t readFile
readFile :: FilePath -> IO String
λ> :t writeFile
writeFile :: FilePath -> String -> IO ()
λ> :t getLine
getLine :: IO String
λ> :t putStr
putStr :: String -> IO ()
λ> :t putStrLn
putStrLn :: String -> IO ()

(∗ This is also the title of the Haskell book by Bryan O’Sullivan, Don Stewart,
and John Goerzen. See http://book.realworldhaskell.org/.)

http://book.realworldhaskell.org/

Hello World 2.1

dialogue :: IO ()
dialogue = do

putStrLn "Hello! Who are you?"
name <- getLine
putStrLn $ "Nice to meet you, " ++ name ++ "!"
let capName = map toUpper name
putStrLn $ "Or should I say " ++ capName ++ "?"

Note that it is not possible to “get out ouf IO” again.

Do not try to write functions like f :: IO String -> String.

(∗ It is, but unsafePerformIO is called like that for a reason.)

Hello World 2.1

dialogue :: IO ()
dialogue = do

putStrLn "Hello! Who are you?"
name <- getLine
putStrLn $ "Nice to meet you, " ++ name ++ "!"
let capName = map toUpper name
putStrLn $ "Or should I say " ++ capName ++ "?"

Note that it is not possible to “get out ouf IO” again.

Do not try to write functions like f :: IO String -> String.

(∗ It is, but unsafePerformIO is called like that for a reason.)

Hello World 2.1

dialogue :: IO ()
dialogue = do

putStrLn "Hello! Who are you?"
name <- getLine
putStrLn $ "Nice to meet you, " ++ name ++ "!"
let capName = map toUpper name
putStrLn $ "Or should I say " ++ capName ++ "?"

Note that it is not∗ possible to “get out ouf IO” again.

Do not try to write functions like f :: IO String -> String.

(∗ It is, but unsafePerformIO is called like that for a reason.)

sequence

We already called <*> the “sequence operator”.

There is also a more general function: sequence.

It converts a list of actions into a single action that gives a list.

Example:

λ> sequence [Just 4, Just 12, Just 43]
Just [4,12,43]

Definition:

mysequence :: Monad m => [m a] -> m [a]
mysequence [] = return []
mysequence (x:xs) = (:) <$> x <*> sequence xs

sequence

We already called <*> the “sequence operator”.

There is also a more general function: sequence.

It converts a list of actions into a single action that gives a list.

Example:

λ> sequence [Just 4, Just 12, Just 43]
Just [4,12,43]

Definition:

mysequence :: Monad m => [m a] -> m [a]
mysequence [] = return []
mysequence (x:xs) = (:) <$> x <*> sequence xs

sequence

We already called <*> the “sequence operator”.

There is also a more general function: sequence.

It converts a list of actions into a single action that gives a list.

Example:

λ> sequence [Just 4, Just 12, Just 43]
Just [4,12,43]

Definition:

mysequence :: Monad m => [m a] -> m [a]
mysequence [] = return []
mysequence (x:xs) = (:) <$> x <*> sequence xs

sequence with IO

λ> :t replicate
replicate :: Int -> a -> [a]
λ> sequence (replicate 3 getLine)
bob
alice
carol
["bob","alice","carol"]

Similar to foldl, also sequence actually has a more general type:
λ> :t sequence
sequence :: (Monad m, Traversable t) => t (m a) -> m (t a)

We will now look at another example of something Traversable.

sequence with IO

λ> :t replicate
replicate :: Int -> a -> [a]
λ> sequence (replicate 3 getLine)
bob
alice
carol
["bob","alice","carol"]

Similar to foldl, also sequence actually has a more general type:
λ> :t sequence
sequence :: (Monad m, Traversable t) => t (m a) -> m (t a)

We will now look at another example of something Traversable.

sequence with IO

λ> :t replicate
replicate :: Int -> a -> [a]
λ> sequence (replicate 3 getLine)
bob
alice
carol
["bob","alice","carol"]

Similar to foldl, also sequence actually has a more general type:
λ> :t sequence
sequence :: (Monad m, Traversable t) => t (m a) -> m (t a)

We will now look at another example of something Traversable.

Trees

Example: trees

Binary-branching trees with things of type a at the leafs:

data Tree a = Leaf a | Branch (Tree a) (Tree a)
deriving (Eq,Ord,Show)

Example:

numberTree :: Tree Int
numberTree = Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))

Example: trees

Binary-branching trees with things of type a at the leafs:

data Tree a = Leaf a | Branch (Tree a) (Tree a)
deriving (Eq,Ord,Show)

Example:

numberTree :: Tree Int
numberTree = Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))

instance Functor Tree

Let us define fmap for trees.

instance Functor Tree where
-- fmap :: (a -> b) -> Tree a -> Tree b

fmap f (Leaf x) = Leaf (f x)
fmap f (Branch left right) = Branch (fmap f left)

(fmap f right)

Example:

λ> numberTree
Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))
λ> fmap (*10) numberTree
Branch (Leaf 10) (Branch (Leaf 20) (Leaf 30))

Note that fmap will never change the shape of the tree.

How does this compare to fmap for Maybe?

instance Functor Tree

Let us define fmap for trees.

instance Functor Tree where
-- fmap :: (a -> b) -> Tree a -> Tree b

fmap f (Leaf x) = Leaf (f x)
fmap f (Branch left right) = Branch (fmap f left)

(fmap f right)

Example:

λ> numberTree
Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))
λ> fmap (*10) numberTree
Branch (Leaf 10) (Branch (Leaf 20) (Leaf 30))

Note that fmap will never change the shape of the tree.

How does this compare to fmap for Maybe?

instance Functor Tree

Let us define fmap for trees.

instance Functor Tree where
-- fmap :: (a -> b) -> Tree a -> Tree b

fmap f (Leaf x) = Leaf (f x)
fmap f (Branch left right) = Branch (fmap f left)

(fmap f right)

Example:

λ> numberTree
Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))
λ> fmap (*10) numberTree
Branch (Leaf 10) (Branch (Leaf 20) (Leaf 30))

Note that fmap will never change the shape of the tree.

How does this compare to fmap for Maybe?

instance Functor Tree

Let us define fmap for trees.

instance Functor Tree where
-- fmap :: (a -> b) -> Tree a -> Tree b

fmap f (Leaf x) = Leaf (f x)
fmap f (Branch left right) = Branch (fmap f left)

(fmap f right)

Example:

λ> numberTree
Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))
λ> fmap (*10) numberTree
Branch (Leaf 10) (Branch (Leaf 20) (Leaf 30))

Note that fmap will never change the shape of the tree.

How does this compare to fmap for Maybe?

instance Applicative Tree

instance Applicative Tree where
-- pure :: a -> Tree a

pure = Leaf
-- (<*>) :: Tree (a -> b) -> Tree a -> Tree b

(<*>) ftree (Leaf x) = fmap ($ x) ftree
(<*>) ftree (Branch xl xr) = Branch (ftree <*> xl)

(ftree <*> xr)

What does this do?

Example:
λ> Branch (Leaf (+1)) (Leaf (+10)) <*> Branch (Leaf 3) (Leaf 4)
Branch (Branch (Leaf 4) (Leaf 13)) (Branch (Leaf 5) (Leaf 14))

instance Applicative Tree

instance Applicative Tree where
-- pure :: a -> Tree a

pure = Leaf
-- (<*>) :: Tree (a -> b) -> Tree a -> Tree b

(<*>) ftree (Leaf x) = fmap ($ x) ftree
(<*>) ftree (Branch xl xr) = Branch (ftree <*> xl)

(ftree <*> xr)

What does this do?

Example:
λ> Branch (Leaf (+1)) (Leaf (+10)) <*> Branch (Leaf 3) (Leaf 4)

Branch (Branch (Leaf 4) (Leaf 13)) (Branch (Leaf 5) (Leaf 14))

instance Applicative Tree

instance Applicative Tree where
-- pure :: a -> Tree a

pure = Leaf
-- (<*>) :: Tree (a -> b) -> Tree a -> Tree b

(<*>) ftree (Leaf x) = fmap ($ x) ftree
(<*>) ftree (Branch xl xr) = Branch (ftree <*> xl)

(ftree <*> xr)

What does this do?

Example:
λ> Branch (Leaf (+1)) (Leaf (+10)) <*> Branch (Leaf 3) (Leaf 4)
Branch (Branch (Leaf 4) (Leaf 13)) (Branch (Leaf 5) (Leaf 14))

Alternative instance Applicative Tree

We could also use the following <*> function, recursing first on the
tree of functions and then making full copies of the value tree.

star :: Tree (a -> b) -> Tree a -> Tree b
star (Leaf f) atree = fmap f atree
star (Branch fl fr) atree = Branch (fl `star` atree)

(fr `star` atree)

Exercise: Check which way to implement instance Applicative
Tree fulfils the Functor and Applicative laws?

Alternative instance Applicative Tree

We could also use the following <*> function, recursing first on the
tree of functions and then making full copies of the value tree.

star :: Tree (a -> b) -> Tree a -> Tree b
star (Leaf f) atree = fmap f atree
star (Branch fl fr) atree = Branch (fl `star` atree)

(fr `star` atree)

Exercise: Check which way to implement instance Applicative
Tree fulfils the Functor and Applicative laws?

instance Monad Tree

Wrapping up a thing into a tree is done using Leaf.

Binding a tree to f means we apply f to all its leafs.

instance Monad Tree where
-- return :: a -> Tree a

return = Leaf
-- (>>=) :: Tree a -> (a -> Tree b) -> Tree b

(>>=) (Leaf x) f = f x
(>>=) (Branch left right) f = Branch (left >>= f) (right >>= f)

Example:
λ> Branch (Leaf 5) (Leaf 8) >>= (\n -> Branch (Leaf (n+100)) (Leaf (n+10)))
Branch (Branch (Leaf 105) (Leaf 15)) (Branch (Leaf 108) (Leaf 18))

instance Monad Tree

Wrapping up a thing into a tree is done using Leaf.

Binding a tree to f means we apply f to all its leafs.

instance Monad Tree where
-- return :: a -> Tree a

return = Leaf
-- (>>=) :: Tree a -> (a -> Tree b) -> Tree b

(>>=) (Leaf x) f = f x
(>>=) (Branch left right) f = Branch (left >>= f) (right >>= f)

Example:
λ> Branch (Leaf 5) (Leaf 8) >>= (\n -> Branch (Leaf (n+100)) (Leaf (n+10)))
Branch (Branch (Leaf 105) (Leaf 15)) (Branch (Leaf 108) (Leaf 18))

Foldable and Traversable

type Traversable :: (* -> *) -> Constraint
class (Functor t, Foldable t) => Traversable t where

traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
sequenceA :: Applicative f => t (f a) -> f (t a)
mapM :: Monad m => (a -> m b) -> t a -> m (t b)
sequence :: Monad m => t (m a) -> m (t a)
{-# MINIMAL traverse | sequenceA #-}

type Foldable :: (* -> *) -> Constraint
class Foldable t where

Data.Foldable.fold :: Monoid m => t m -> m
foldMap :: Monoid m => (a -> m) -> t a -> m
Data.Foldable.foldMap' :: Monoid m => (a -> m) -> t a -> m
foldr :: (a -> b -> b) -> b -> t a -> b
Data.Foldable.foldr' :: (a -> b -> b) -> b -> t a -> b
foldl :: (b -> a -> b) -> b -> t a -> b
Data.Foldable.foldl' :: (b -> a -> b) -> b -> t a -> b
foldr1 :: (a -> a -> a) -> t a -> a
foldl1 :: (a -> a -> a) -> t a -> a
Data.Foldable.toList :: t a -> [a]
null :: t a -> Bool
length :: t a -> Int
elem :: Eq a => a -> t a -> Bool
maximum :: Ord a => t a -> a
minimum :: Ord a => t a -> a
sum :: Num a => t a -> a
product :: Num a => t a -> a
{-# MINIMAL foldMap | foldr #-}

Foldable and Traversable

type Traversable :: (* -> *) -> Constraint
class (Functor t, Foldable t) => Traversable t where

traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
sequenceA :: Applicative f => t (f a) -> f (t a)
mapM :: Monad m => (a -> m b) -> t a -> m (t b)
sequence :: Monad m => t (m a) -> m (t a)
{-# MINIMAL traverse | sequenceA #-}

type Foldable :: (* -> *) -> Constraint
class Foldable t where

Data.Foldable.fold :: Monoid m => t m -> m
foldMap :: Monoid m => (a -> m) -> t a -> m
Data.Foldable.foldMap' :: Monoid m => (a -> m) -> t a -> m
foldr :: (a -> b -> b) -> b -> t a -> b
Data.Foldable.foldr' :: (a -> b -> b) -> b -> t a -> b
foldl :: (b -> a -> b) -> b -> t a -> b
Data.Foldable.foldl' :: (b -> a -> b) -> b -> t a -> b
foldr1 :: (a -> a -> a) -> t a -> a
foldl1 :: (a -> a -> a) -> t a -> a
Data.Foldable.toList :: t a -> [a]
null :: t a -> Bool
length :: t a -> Int
elem :: Eq a => a -> t a -> Bool
maximum :: Ord a => t a -> a
minimum :: Ord a => t a -> a
sum :: Num a => t a -> a
product :: Num a => t a -> a
{-# MINIMAL foldMap | foldr #-}

instance Foldable Tree

instance Foldable Tree where
-- foldr :: (a -> b -> b) -> b -> Tree a -> b

foldr f y (Leaf x) = f x y
foldr f y (Branch l r) = foldr f (foldr f y l) r

instance Traversable Tree where
-- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

traverse g (Leaf x) = Leaf <$> g x
traverse g (Branch l r) = Branch <$> traverse g l <*> traverse g r

instance Foldable Tree

instance Foldable Tree where
-- foldr :: (a -> b -> b) -> b -> Tree a -> b

foldr f y (Leaf x) = f x y
foldr f y (Branch l r) = foldr f (foldr f y l) r

instance Traversable Tree where
-- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

traverse g (Leaf x) = Leaf <$> g x
traverse g (Branch l r) = Branch <$> traverse g l <*> traverse g r

instance Foldable Tree

instance Foldable Tree where
-- foldr :: (a -> b -> b) -> b -> Tree a -> b

foldr f y (Leaf x) = f x y
foldr f y (Branch l r) = foldr f (foldr f y l) r

instance Traversable Tree where
-- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

traverse g (Leaf x) = Leaf <$> g x
traverse g (Branch l r) = Branch <$> traverse g l <*> traverse g r

instance Foldable Tree

instance Foldable Tree where
-- foldr :: (a -> b -> b) -> b -> Tree a -> b

foldr f y (Leaf x) = f x y
foldr f y (Branch l r) = foldr f (foldr f y l) r

instance Traversable Tree where
-- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

traverse g (Leaf x) = Leaf <$> g x
traverse g (Branch l r) = Branch <$> traverse g l <*> traverse g r

What is it good for?
Now foldr and many more functions work on our trees:

λ> numberTree
Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))
λ> length numberTree
3
λ> sum numberTree
6

And we can execute a tree of IO actions!

λ> sequence $ Branch (Leaf (putStrLn "kwik"))
(Branch (Leaf (putStrLn "kwek"))

(Leaf (putStrLn "kwak")))
kwik
kwek
kwak
Branch (Leaf ()) (Branch (Leaf ()) (Leaf ()))

What is it good for?
Now foldr and many more functions work on our trees:

λ> numberTree
Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))
λ> length numberTree
3
λ> sum numberTree
6

And we can execute a tree of IO actions!

λ> sequence $ Branch (Leaf (putStrLn "kwik"))
(Branch (Leaf (putStrLn "kwek"))

(Leaf (putStrLn "kwak")))
kwik
kwek
kwak
Branch (Leaf ()) (Branch (Leaf ()) (Leaf ()))

Other Trees

Exercise 3.4: Add things of type a at intermediate nodes.

Non-binary trees with arbitrary branching:

data ArbTree a = Node a [ArbTree a]

Note that we no longer need an extra Leaf case. Leafs are just
Nodes where the [ArbTree a] list of children is empty.

Exercise: Can you also make ArbTree a Functor etc.?

Other Trees

Exercise 3.4: Add things of type a at intermediate nodes.

Non-binary trees with arbitrary branching:

data ArbTree a = Node a [ArbTree a]

Note that we no longer need an extra Leaf case. Leafs are just
Nodes where the [ArbTree a] list of children is empty.

Exercise: Can you also make ArbTree a Functor etc.?

Randomness

Random Integers

Getting a random value is obviously not a pure function.

To get a random integer we need interaction with the outside world.

(In UNIX this is usually /dev/random or /dev/urandom.)

getRandomInt :: Int -> IO Int
getRandomInt n = getStdRandom (randomR (0,n))

This gives:

λ> getRandomInt 20
16
λ> getRandomInt 20
18

Random Integer Lists

Generate an integer list with n entries in the range [0..k].

getInts :: Int -> Int -> IO [Int]
getInts _ 0 = return []
getInts k n =

getRandomInt k >>= \x ->
getInts k (n-1) >>= \xs -> do

return (x:xs)

We can also write this “point-free”:

getInts'' :: Int -> Int -> IO [Int]
getInts'' _ 0 = return []
getInts'' k n = (:) <$> getRandomInt k <*> getInts'' k (n-1)

Random Integer Lists

Generate an integer list with n entries in the range [0..k].

getInts :: Int -> Int -> IO [Int]
getInts _ 0 = return []
getInts k n =

getRandomInt k >>= \x ->
getInts k (n-1) >>= \xs -> do

return (x:xs)

We can also write this “point-free”:

getInts'' :: Int -> Int -> IO [Int]
getInts'' _ 0 = return []
getInts'' k n = (:) <$> getRandomInt k <*> getInts'' k (n-1)

Random Lists of Random Integers

Finally, we can also choose the parameters randomly:

genIntList :: IO [Int]
genIntList = do

k <- getRandomInt 20
n <- getRandomInt 10
getInts k n

This gives, e.g.:

λ> genIntList
[0,0,0,0]
λ> genIntList
[-1,-5,-3,-2,-1,6,2,-8]
λ> genIntList
[15,-10,7,-15,5,-13,15,11,13,-11]

Project Practicalities

Timeline

I now: find a group (2 or 3 people) and topic

see https://malv.in/2022/funcproglog/topics.html

start reading material or explore existing code

I Friday 21st: send one email per group to Malvin:

Who are you, and what is your topic?

I next week: continue reading, shift to working

I Friday 28th: work-in-progress presentations

I Monday 31st: get feedback on current version (optional!)

I Friday 4th: deadline for report

https://malv.in/2022/funcproglog/topics.html

Report Template

You should use this template for your project:

https://github.com/funcspec/report-example

(For other larger Haskell projects, use stack new to create a new
package with lots of boilerplate.)

https://github.com/funcspec/report-example

Project Grading Criteria
You will only get a pass/fail grade (and feedback comments).

Your final report:

I should have a specific topic and a concrete goal
I must be written in literate programming style
I should be well-structured
I must be at most 15 pages

Your program:

I must compile
I must have zero warnings with -Wall
I should generate zero hints from hlint
I should have tests

Your presentation:

I is about work-in-progress
I should be at most 20 minutes
I can be given by a subgroup

stack and cabal

Bigger projects

I use more than one .hs or .lhs file

I may depend on other Haskell libraries

To manage projects, we use stack.yaml and package.yaml.

The minimal stack.yaml is this:

resolver: lts-18.21

This refers to https://www.stackage.org/lts-18.21 and hopefully
ensures that your code still works next year.

https://www.stackage.org/lts-18.21

stack and cabal

Bigger projects

I use more than one .hs or .lhs file

I may depend on other Haskell libraries

To manage projects, we use stack.yaml and package.yaml.

The minimal stack.yaml is this:

resolver: lts-18.21

This refers to https://www.stackage.org/lts-18.21 and hopefully
ensures that your code still works next year.

https://www.stackage.org/lts-18.21

Package management
The package.yaml describes your project and its dependencies:
name: report
version: 0.1.0.0
synopsis: My Haskell report project
description: See report.pdf
maintainer: My Name <my.email@example.com>
category: Logic

ghc-options: -Wall

dependencies:
- base >= 4.14 && < 5
- random
- QuickCheck

library:
source-dirs: lib

executables:
myprogram:

main: Main.lhs
source-dirs: exec
dependencies:

- report

tests:
simpletests:

main: simpletests.lhs
source-dirs: test
dependencies:

- report
- QuickCheck
- hspec

Version Control

Please use git when working in teams!

It takes half an hour, but you will then prevent the “Dropbox
problem” of overwriting each others work.

For a tutorial, click here, for a cheat sheet, click here.

The most widely used hosted services for git are github and gitlab.

You may submit your report via email, but using git and a service
like github or gitlab is strongly preferred if you want to get help
or comments from Malvin during the next weeks.

https://guides.github.com/introduction/git-handbook/
https://training.github.com/downloads/github-git-cheat-sheet/

Version Control

Please use git when working in teams!

It takes half an hour, but you will then prevent the “Dropbox
problem” of overwriting each others work.

For a tutorial, click here, for a cheat sheet, click here.

The most widely used hosted services for git are github and gitlab.

You may submit your report via email, but using git and a service
like github or gitlab is strongly preferred if you want to get help
or comments from Malvin during the next weeks.

https://guides.github.com/introduction/git-handbook/
https://training.github.com/downloads/github-git-cheat-sheet/

See you again at 13:00.

Bonus Content: History of the IO Monad

Since 1992 the most famous Monad is IO.

As told by Simon Peyton-Jones here, Haskell was useless at first:

https://youtu.be/re96UgMk6GQ?t=31m20s

(watch this from 31:20 until 38:22)

https://youtu.be/re96UgMk6GQ?t=31m20s

Bonus Content: Invention vs. Discovery

“Most of you use languages that were invented, and you
can tell, can’t you. This is my invitation to you to use
programming languages that are discovered.”

Philip Wadler: Propositions as Types
There are many recordings of this talk, but the original paper is this one:

https://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf

https://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf

	IO
	Trees
	Randomness
	Project Practicalities

