
Functional Programming for Logicians - Lecture 1
Functions, Lists, Types

Malvin Gattinger

12 January 2022

module L1 where

Introduction

Who is who

You

I a wide range of programming experiences: nothing, Java,
Python, Rust, Agda, Lean, Prolog, Lisp, C, C++, C#, Haskell,
Dart, Vala, Kotlin, Mathematica, . . .

I interests: Category Theory, Cognition, Dynamic Epistemic
Logic, Inquisitive Semantics, Proof Theory, Recursion Theory,
Truth Makers, . . .

Malvin

I 2012–2014 MoL
I 2014–2018 PhD at ILLC
I 2018–2021 PostDoc in Groningen
I 2021– assistant prof at ILLC

Who is who

You

I a wide range of programming experiences: nothing, Java,
Python, Rust, Agda, Lean, Prolog, Lisp, C, C++, C#, Haskell,
Dart, Vala, Kotlin, Mathematica, . . .

I interests: Category Theory, Cognition, Dynamic Epistemic
Logic, Inquisitive Semantics, Proof Theory, Recursion Theory,
Truth Makers, . . .

Malvin

I 2012–2014 MoL
I 2014–2018 PhD at ILLC
I 2018–2021 PostDoc in Groningen
I 2021– assistant prof at ILLC

Who is who

You

I a wide range of programming experiences: nothing, Java,
Python, Rust, Agda, Lean, Prolog, Lisp, C, C++, C#, Haskell,
Dart, Vala, Kotlin, Mathematica, . . .

I interests: Category Theory, Cognition, Dynamic Epistemic
Logic, Inquisitive Semantics, Proof Theory, Recursion Theory,
Truth Makers, . . .

Malvin

I 2012–2014 MoL
I 2014–2018 PhD at ILLC
I 2018–2021 PostDoc in Groningen
I 2021– assistant prof at ILLC

Functional Programming

I the main operation is function application

I describe what, not how it should be computed

I a program is a list of definitions of functions

Haskell

I lambda calculus meets category theory

I typed: every expression has a type fixed at compile time

I lazy: only compute what and when it is needed

I pure: functions have no side-effects
I same input → same output

Why?

(Simon Peyton-Jones: Escape from the ivory tower: the Haskell journey)

Why?

(Simon Peyton-Jones: Escape from the ivory tower: the Haskell journey)

Let’s go

Calculating

We work in ghci for now, the interactive compiler.

λ> 7 + 8 * 9
79

λ> (7 + 8) * 9
135

λ> sum [1,6,10]
17

Functions

Create a file example.hs which contains this:

square x = x * x

Now we can run ghci example.hs and use this function!

λ> square 9
81
λ> square 10
100

⇒ How can we define double, cube and plus?

Functions

Create a file example.hs which contains this:

square x = x * x

Now we can run ghci example.hs and use this function!

λ> square 9
81
λ> square 10
100

⇒ How can we define double, cube and plus?

Functions

Create a file example.hs which contains this:

square x = x * x

Now we can run ghci example.hs and use this function!

λ> square 9
81
λ> square 10
100

⇒ How can we define double, cube and plus?

Functions

Create a file example.hs which contains this:

square x = x * x

Now we can run ghci example.hs and use this function!

λ> square 9
81
λ> square 10
100

⇒ How can we define double, cube and plus?

Our first Type (Error)
λ> square 10
100
λ> square "10"
<interactive>:3:8: error:

• Couldn't match expected type ‘Integer’
with actual type ‘[Char]’

I lied before.

The definition of square we were actually using is this:

square :: Integer -> Integer
square x = x * x

We read the :: double colon as “has the type”

In Haskell everything has a type!

⇒ What are the types of 10, "10", +, * and +5?

Our first Type (Error)
λ> square 10
100
λ> square "10"
<interactive>:3:8: error:

• Couldn't match expected type ‘Integer’
with actual type ‘[Char]’

I lied before.

The definition of square we were actually using is this:

square :: Integer -> Integer
square x = x * x

We read the :: double colon as “has the type”

In Haskell everything has a type!

⇒ What are the types of 10, "10", +, * and +5?

Our first Type (Error)
λ> square 10
100
λ> square "10"
<interactive>:3:8: error:

• Couldn't match expected type ‘Integer’
with actual type ‘[Char]’

I lied before.

The definition of square we were actually using is this:

square :: Integer -> Integer
square x = x * x

We read the :: double colon as “has the type”

In Haskell everything has a type!

⇒ What are the types of 10, "10", +, * and +5?

Our first Type (Error)
λ> square 10
100
λ> square "10"
<interactive>:3:8: error:

• Couldn't match expected type ‘Integer’
with actual type ‘[Char]’

I lied before.

The definition of square we were actually using is this:

square :: Integer -> Integer
square x = x * x

We read the :: double colon as “has the type”

In Haskell everything has a type!

⇒ What are the types of 10, "10", +, * and +5?

Lists

myList :: [Integer]
myList = [1,23,42,111,1988,10,29]

longList :: [Integer]
longList = [1..100]

λ> length myList
7
λ> length longList
100
λ> 1:3:myList
[1,3,1,23,42,111,1988,10,29]
λ> myList ++ [5,7] ++ myList
[1,23,42,111,1988,10,29,5,7,1,23,42,111,1988,10,29]

mapping over lists

λ> map square myList
[1,529,1764,12321,3952144,100,841]

λ> map square [1..4]
[1,4,9,16]

λ> map (*5) [1,2,3,5]
[5,10,15,25]

⇒ What does map do?

⇒ What is the type of map? Here? In general?

How can we define map?

Hint: Pattern matching on [] and the : operator

mapping over lists

λ> map square myList
[1,529,1764,12321,3952144,100,841]

λ> map square [1..4]
[1,4,9,16]

λ> map (*5) [1,2,3,5]
[5,10,15,25]

⇒ What does map do?

⇒ What is the type of map? Here? In general?

How can we define map?

Hint: Pattern matching on [] and the : operator

mapping over lists

λ> map square myList
[1,529,1764,12321,3952144,100,841]

λ> map square [1..4]
[1,4,9,16]

λ> map (*5) [1,2,3,5]
[5,10,15,25]

⇒ What does map do?

⇒ What is the type of map? Here? In general?

How can we define map?

Hint: Pattern matching on [] and the : operator

Type Variables and Inference

wordList :: [String]
wordList = ["beyonce","metallica","k3","anathema"]

⇒ Why does map square wordList give an error?

Hint: Look at the error generated by this:

λ> import Data.Char
λ> :t toUpper
toUpper :: Char -> Char
λ> map toUpper wordList
...

The List Monster

⇒ Define these four functions, start with the type!

picture from http://learnyouahaskell.com/starting-out/#an-intro-to-lists

http://learnyouahaskell.com/starting-out/#an-intro-to-lists

Strings are lists of characters

In fact we have:

type String = [Char]

Example:

λ> "barbara" == ['b','a','r','b','a','r','a']
True

Note the difference between ' and ":

λ> :t 'a'
'a' :: Char
λ> :t "a"
"a" :: [Char]

⇒ Why does 'ab' not make sense?

Strings are lists of characters

In fact we have:

type String = [Char]

Example:

λ> "barbara" == ['b','a','r','b','a','r','a']
True

Note the difference between ' and ":

λ> :t 'a'
'a' :: Char
λ> :t "a"
"a" :: [Char]

⇒ Why does 'ab' not make sense?

Strings are lists of characters

In fact we have:

type String = [Char]

Example:

λ> "barbara" == ['b','a','r','b','a','r','a']
True

Note the difference between ' and ":

λ> :t 'a'
'a' :: Char
λ> :t "a"
"a" :: [Char]

⇒ Why does 'ab' not make sense?

Mapping and Sorting Strings

swab :: Char -> Char
swab 'a' = 'b'
swab 'b' = 'a'
swab c = c

λ> map swab "abba"
"baab"
λ> map swab "barbara"
"abrabrb"

λ> import Data.List
λ> sort "hello"
"ehllo"
λ> sort "barbara"
"aaabbrr"

Mapping and Sorting Strings

swab :: Char -> Char
swab 'a' = 'b'
swab 'b' = 'a'
swab c = c

λ> map swab "abba"
"baab"
λ> map swab "barbara"
"abrabrb"

λ> import Data.List
λ> sort "hello"
"ehllo"
λ> sort "barbara"
"aaabbrr"

Mapping and Sorting Strings

swab :: Char -> Char
swab 'a' = 'b'
swab 'b' = 'a'
swab c = c

λ> map swab "abba"
"baab"
λ> map swab "barbara"
"abrabrb"

λ> import Data.List
λ> sort "hello"
"ehllo"
λ> sort "barbara"
"aaabbrr"

Infinite Lazy Lists
What happens here?

naturals :: [Integer]
naturals = [1..]

What happens if I evaluate naturals in ghci now?

Hint: Maybe I shouldn’t

But we can ask for finite parts of it, lazily!

λ> take 11 naturals
[1,2,3,4,5,6,7,8,9,10,11]
λ> map square (take 11 naturals)
[1,4,9,16,25,36,49,64,81,100,121]

λ> take 11 (map square naturals) -- not strict!
[1,4,9,16,25,36,49,64,81,100,121]

⇒ exercise: Give a definition of take.

Infinite Lazy Lists
What happens here?

naturals :: [Integer]
naturals = [1..]

What happens if I evaluate naturals in ghci now?

Hint: Maybe I shouldn’t

But we can ask for finite parts of it, lazily!

λ> take 11 naturals
[1,2,3,4,5,6,7,8,9,10,11]
λ> map square (take 11 naturals)
[1,4,9,16,25,36,49,64,81,100,121]

λ> take 11 (map square naturals) -- not strict!
[1,4,9,16,25,36,49,64,81,100,121]

⇒ exercise: Give a definition of take.

Infinite Lazy Lists
What happens here?

naturals :: [Integer]
naturals = [1..]

What happens if I evaluate naturals in ghci now?

Hint: Maybe I shouldn’t

But we can ask for finite parts of it, lazily!

λ> take 11 naturals
[1,2,3,4,5,6,7,8,9,10,11]
λ> map square (take 11 naturals)
[1,4,9,16,25,36,49,64,81,100,121]

λ> take 11 (map square naturals) -- not strict!
[1,4,9,16,25,36,49,64,81,100,121]

⇒ exercise: Give a definition of take.

Recursion

sentence :: String
sentence = "Sentences can go " ++ onAndOn where

onAndOn = "on and " ++ onAndOn

Try this out with take 65 sentence in ghci.

Type Hype

I Integer
I Int
I [a]
I Char
I String = [Char]

Tuples (aka products):

I (a,b)
I (a,b,[c])

Sum types:

I Either a b
I Maybe a
I ()

Type Hype

I Integer
I Int
I [a]
I Char
I String = [Char]

Tuples (aka products):

I (a,b)
I (a,b,[c])

Sum types:

I Either a b
I Maybe a
I ()

Tuples

malvin, jana :: (String,Integer)
malvin = ("Malvin",1988)
jana = ("Jana",1993)

Can you guess what the following functions do?

fst :: (a,b) -> a
snd :: (a,b) -> b
Data.Tuple.swap :: (a,b) -> (b,a)

λ> fst malvin
"Malvin"
λ> snd malvin
1988
λ> swap jana
(1993,"Jana")

Tuples

malvin, jana :: (String,Integer)
malvin = ("Malvin",1988)
jana = ("Jana",1993)

Can you guess what the following functions do?

fst :: (a,b) -> a
snd :: (a,b) -> b
Data.Tuple.swap :: (a,b) -> (b,a)

λ> fst malvin
"Malvin"
λ> snd malvin
1988
λ> swap jana
(1993,"Jana")

Tuples

malvin, jana :: (String,Integer)
malvin = ("Malvin",1988)
jana = ("Jana",1993)

Can you guess what the following functions do?

fst :: (a,b) -> a
snd :: (a,b) -> b
Data.Tuple.swap :: (a,b) -> (b,a)

λ> fst malvin
"Malvin"
λ> snd malvin
1988
λ> swap jana
(1993,"Jana")

Lambdas

We write \ for λ to define an anonymous function:

λ> (\y -> y + 10) 100
110
λ> map (\x -> x + 10) [5..15]
[15,16,17,18,19,20,21,22,23,24,25]

⇒ How can we define fst, snd and swap with lambdas?

Lambdas

We write \ for λ to define an anonymous function:

λ> (\y -> y + 10) 100
110
λ> map (\x -> x + 10) [5..15]
[15,16,17,18,19,20,21,22,23,24,25]

⇒ How can we define fst, snd and swap with lambdas?

Function application and composition
people :: [(String,Integer)]
people = [jana,malvin]

λ> map (length . fst) people
[4,6]

λ> concat $ map fst people
"JanaMalvin"
λ> sum $ map snd people
3981

⇒ Questions

I What do . and $ do?

I Why is $ still useful?

I Why should we call (length . fst) “point-free”?

Function application and composition
people :: [(String,Integer)]
people = [jana,malvin]

λ> map (length . fst) people
[4,6]

λ> concat $ map fst people
"JanaMalvin"
λ> sum $ map snd people
3981

⇒ Questions

I What do . and $ do?

I Why is $ still useful?

I Why should we call (length . fst) “point-free”?

List Comprehension

We can also build new lists using this notation:

threefolds :: [Integer]
threefolds = [n | n <- [0..], mod n 3 == 0]

The notation is close to set comprehension:

{n ∈ N | n ≡ 0 mod 3}

An equivalent way to define the above:

filter (\n -> mod n 3 == 0) [0..]

List Comprehension

We can also build new lists using this notation:

threefolds :: [Integer]
threefolds = [n | n <- [0..], mod n 3 == 0]

The notation is close to set comprehension:

{n ∈ N | n ≡ 0 mod 3}

An equivalent way to define the above:

filter (\n -> mod n 3 == 0) [0..]

Even more Lists

These are all the same:

[1..10]
[1,2,3,4,5,6,7,8,9,10]
1:2:3:4:5:6:7:8:9:10:[]
1:2:3:4:5:6:[7..10]
[x | x <- [1..100], x <= 10]
takeWhile (< 11) [1..]

But what about this one?

filter (< 11) [1..]

Is it the same value? Is it the same program?

Even more Lists

These are all the same:

[1..10]
[1,2,3,4,5,6,7,8,9,10]
1:2:3:4:5:6:7:8:9:10:[]
1:2:3:4:5:6:[7..10]
[x | x <- [1..100], x <= 10]
takeWhile (< 11) [1..]

But what about this one?

filter (< 11) [1..]

Is it the same value? Is it the same program?

Guards

Instead of code like this . . .

magnitudeUgly :: Integer -> String
magnitudeUgly n = if n < 10

then "small"
else if n < 100

then "medium"
else "large"

. . . we usually prefer guards like this:

magnitude :: Integer -> String
magnitude n | n < 10 = "small"

| n < 100 = "medium"
| otherwise = "large"

⇒ What is the type of otherwise and what does it do?

Guards

Instead of code like this . . .

magnitudeUgly :: Integer -> String
magnitudeUgly n = if n < 10

then "small"
else if n < 100

then "medium"
else "large"

. . . we usually prefer guards like this:

magnitude :: Integer -> String
magnitude n | n < 10 = "small"

| n < 100 = "medium"
| otherwise = "large"

⇒ What is the type of otherwise and what does it do?

How to make a type

type defines types that are just abbreviations:

type Person = (String,Integer)
type Group = [Person]

To create actually new types we use data:

data Animal = Cat | Horse | Koala
data MyEither a b = MyLeft a | MyRight b
data MyMaybe a = MyNothing | MyJust a

This defines a new type and constructors at the same time!

How to make a type

type defines types that are just abbreviations:

type Person = (String,Integer)
type Group = [Person]

To create actually new types we use data:

data Animal = Cat | Horse | Koala
data MyEither a b = MyLeft a | MyRight b
data MyMaybe a = MyNothing | MyJust a

This defines a new type and constructors at the same time!

How to make a type

type defines types that are just abbreviations:

type Person = (String,Integer)
type Group = [Person]

To create actually new types we use data:

data Animal = Cat | Horse | Koala
data MyEither a b = MyLeft a | MyRight b
data MyMaybe a = MyNothing | MyJust a

This defines a new type and constructors at the same time!

Pattern matching
Each data type can be matched by patterns:

I Bool: True, False, b
I Lists: [], (x:xs), (x:y:rest), . . .
I Strings: 'h':'e':[], "hello", . . .
I Tuples: (x,y)
I Numbers: 0, 1, 2, 3, 42, . . .
I Maybe a: (Just x), Nothing
I Either a b: Left x, Right y
I anything: x, mySuperLongVarName, _

Patterns can occur in two places:

I as arguments of functions:

isEmpty :: [a] -> Bool
isEmpty [] = True
isEmpty (_:_) = False

I in case ... of ... -> ... constructs.

Pattern matching
Each data type can be matched by patterns:

I Bool: True, False, b
I Lists: [], (x:xs), (x:y:rest), . . .
I Strings: 'h':'e':[], "hello", . . .
I Tuples: (x,y)
I Numbers: 0, 1, 2, 3, 42, . . .
I Maybe a: (Just x), Nothing
I Either a b: Left x, Right y
I anything: x, mySuperLongVarName, _

Patterns can occur in two places:

I as arguments of functions:

isEmpty :: [a] -> Bool
isEmpty [] = True
isEmpty (_:_) = False

I in case ... of ... -> ... constructs.

Logic in Haskell

Propositional Logic
Propositional Logic formulas are defined by: ϕ ::= pn | ¬ϕ | ϕ ∧ ϕ

In Haskell:

data Form = P Int | Neg Form | Conj Form Form

Given an assignment v : P → {>,⊥}, we define:

I v � pi :⇐⇒ v(pi)
I v � ¬ϕ :⇐⇒ not v � ϕ
I v � ϕ ∧ ψ :⇐⇒ v � ϕ and v � ψ

type Assignment = Int -> Bool

satisfies :: Assignment -> Form -> Bool
satisfies v (P k) = v k
satisfies v (Neg f) = not (satisfies v f)
satisfies v (Conj f g) = satisfies v f && satisfies v g

Propositional Logic
Propositional Logic formulas are defined by: ϕ ::= pn | ¬ϕ | ϕ ∧ ϕ

In Haskell:

data Form = P Int | Neg Form | Conj Form Form

Given an assignment v : P → {>,⊥}, we define:

I v � pi :⇐⇒ v(pi)
I v � ¬ϕ :⇐⇒ not v � ϕ
I v � ϕ ∧ ψ :⇐⇒ v � ϕ and v � ψ

type Assignment = Int -> Bool

satisfies :: Assignment -> Form -> Bool
satisfies v (P k) = v k
satisfies v (Neg f) = not (satisfies v f)
satisfies v (Conj f g) = satisfies v f && satisfies v g

Examples

We define an assignment:

world :: Assignment
world 0 = True
world 1 = False
world 2 = True
world _ = False

λ> satisfies world (Neg . Neg $ P 2)
True
λ> satisfies world (Conj (Neg $ P 1) (P 0))
True

Examples

We define an assignment:

world :: Assignment
world 0 = True
world 1 = False
world 2 = True
world _ = False

λ> satisfies world (Neg . Neg $ P 2)
True
λ> satisfies world (Conj (Neg $ P 1) (P 0))
True

Preview

Actually, you want this:

data Form = P Int | Neg Form | Conj Form Form
deriving (Eq,Ord,Show)

Eq, Ord and Show are type classes, a topic for tomorrow.

Practical Stuff

Abbreviation Mania

I GHC is the Glasgow Haskell Compiler

I GHCi is the interactive interface of GHC

I stack is a build tool to simplify your life

I cabal is another tool and a package format

I Hackage is a public database of Haskell libraries

I Stackage provides stable snapshots, called resolvers.

I VS Code is a common and beginner-friendly editor.

Organization

Course website: https://malv.in/2022/funcproglog

Lectures on Zoom

Exercise Sessions on gather.town

⇒ Links are in the first email!

Other useful tips for all-online:

I Try out screen-sharing in gather.town

I If you want to work live in pairs, use a collaborative editor!
I EtherPad (plain text) on gather.town tables!
I “Live Share” extension for VS Code
I https://replit.com/

https://malv.in/2022/funcproglog

Organization

Course website: https://malv.in/2022/funcproglog

Lectures on Zoom

Exercise Sessions on gather.town

⇒ Links are in the first email!

Other useful tips for all-online:

I Try out screen-sharing in gather.town

I If you want to work live in pairs, use a collaborative editor!
I EtherPad (plain text) on gather.town tables!
I “Live Share” extension for VS Code
I https://replit.com/

https://malv.in/2022/funcproglog

Literate Haskell

You can download the lecture and exercises as .lhs (or .hs) files.

This stands for “Literate Haskell” and is a way to combine programs
and documentation or longer comments in one file.

In .lhs files the actual Haskell code has to be

I indented with with > (Markdown style) or

I between \begin{code} . . . \end{code} (LATEXstyle)

How to start

0. See instructions in first email to install Haskell and VS Code.

1. Download E1.lhs and open a terminal where you saved it.

2. Run ghci E1.lhs (or stack ghci E1.lhs).

3. Edit the file in VS code.

4. Reload with :r and read carefully what GHC tells you.

5. Try out all the things!

6. Go to 3.

See you again at 13:00 in gather.town.

	Introduction
	Let’s go
	Logic in Haskell
	Practical Stuff

