
Exercises 4

module E4 where

import Data.List

Exercise 4.1: Model Checking PAL
Recall the following functions from the lecture today:

(!) :: Eq a => [(a,b)] -> a -> b
(!) v x = let (Just y) = lookup x v in y

(?) :: Eq a => [[a]] -> a -> [a]
(?) lls x = head (filter (x `elem`) lls)

type Prop = Int
type Ag = String
data Form = P Prop | Neg Form | Con Form Form | K Ag Form deriving (Eq,Ord,Show)

dis :: Form -> Form -> Form
dis f g = Neg (Con (Neg f) (Neg g))

type World = Int
type Relations = [(Ag, [[World]])]
type Valuation = [(World, [Prop])]
data Model = Mo { worlds :: [World]

, rel :: Relations
, val :: Valuation }

deriving (Eq,Ord,Show)

isTrue :: (Model,World) -> Form -> Bool
isTrue (m,w) (P p) = p `elem` (val m ! w)
isTrue (m,w) (Neg f) = not (isTrue (m,w) f)
isTrue (m,w) (Con f g) = isTrue (m,w) f && isTrue (m,w) g
isTrue (m,w) (K i f) = and [isTrue (m,w') f | w' <- (rel m ! i) ? w]

Implement the announce function to make public announcements:

announce :: Model -> Form -> Model
announce oldModel@(Mo oldWorlds oldRel oldVal) f = Mo newWorlds newRel newVal where

newWorlds = undefined
newRel = undefined
newVal = undefined

Congratulations, you now have a simple model checker for Public Announcement Logic (PAL), the simplest
version of Dynamic Epistemic Logic (DEL).

Other features you can add:

• the announcement operator such as [!φ]ψ to the Form type.

• the knowing-whether operator

• operators for distributed knowledge and common knowledge of groups of agents (Note: for common
knowledge you need a transitive closure. See https://staff.fnwi.uva.nl/d.j.n.vaneijck2/software/demo_s5/
EREL.pdf for how to compute it when relations are partitions.)

1

https://staff.fnwi.uva.nl/d.j.n.vaneijck2/software/demo_s5/EREL.pdf
https://staff.fnwi.uva.nl/d.j.n.vaneijck2/software/demo_s5/EREL.pdf

For more inspiration you can have a look at DEMO, DEMO-S5 and SMCDEL (see course website).

Exercise 4.2: Muddy Children
Use your code from the previous exercise to solve this version of the muddy children puzzle:

Three children play together. Some of the children get mud on their foreheads. Each can see the
mud on others but not on their own forehead. The father says: "At least one of you has mud on
your forehead". The father then asks: “Do you know whether you have mud on your own forehead?
The please raise your hand.” Nobody reacts. The father repeats the question a second time and now
some children raise their hand. How many children are muddy?

start :: Model
start = Mo

-- worlds:
[0 -- nobody is muddy
, 1 -- only child 1 is muddy
, 2 -- only child 2 is muddy
, 3 -- only child 3 is muddy
, 4 -- 1 and 2 are muddy
, 5 -- 2 and 3 are muddy
, 6 -- 1 and 3 are muddy
, 7 -- all three are muddy
]
-- relations -- fill in the missing ones!
[("1",[[0,1],[2,4],[3,6],[5,7]])
,("2",undefined)
,("3",undefined)]
-- valuation:
[(0,[]),(1,[1]),(2,[2]),(3,[3])
,(4,[1,2]),(5,[2,3]),(6,[1, 3]),(7,[1,2,3])]

muddy2 :: Model
muddy2 = start `announce` undefined -- hint: use "dis" to say "at least one ..."

Evaluate start and muddy2 in ghci to see which worlds are removed by the announcement. Then define a new
muddy3 by making the next announcement, and so on.

Exercise 4.3: Drinking Logicians
The following is dual to the Muddy Children example:

Write a model for the drinking logicians and check:

(Side note: to make your life easier, replace “is common knowledge” with “everyone knows” in the statements
below.)

• After the first logician says “I don’t know.” it is common knowledge that she wants beer.
• The sequence of all four announcements is possible iff everyone wants beer.
• After the second logician says “I don’t know.” it is common knowledge that the third logician knows

whether everyone wants beer.

2

Use your model to verify or falsify the following statements:

• After the second logician says “I don’t know.” it is common knowledge that the third logician knows that
everyone wants beer.

• If the third logician would say No! it would be common knowledge that only the first two want beer and
the third does not.

Exercise 4.4: Moore Sentences
(This is a longer exercises. Feel free to skip.)

Intuitively, after announcing something, all agents know it. So we might think that for any φ the PAL formula
[!φ]Kiφ is valid:

conjecture :: (Model,Form) -> Bool
conjecture (m,f) = and [isTrue (m,w) f | w <- worlds m]

However, this conjecture is wrong. Let us use QuickCheck to find a counter example!

First you should write instances of Arbitrary for Model and Form. You might have code from Exercises 2 that
can be reused or adapted for this. Another option is to steal from the SMCDEL code, click here and click here.

Then you can run quickCheck conjecture.

Can you think of other conjectures and quickcheck them?

Side note: Why did you not have to write an Arbitrary instance for (Model,Form)?

Exercise 4.5: Kripke Models and Knowledge Structures
Part (i) Find a Kripke model which is equivalent to this knowledege structure:

F = (V = {p, q, r}, θ = (p ∨ q) → r,Oa = {p}, Ob = {q})

Part (ii) Find a knowledge structure which is equivalent to this Kripke model:

2
p2

1
p1

0
p1, p2

Bob Alice

KrM [0,1,2]
[("Alice",[[0],[1,2]])
, ("Bob" ,[[0,1],[2]])]
[(0,[(P 1,True),(P 2,True)])
, (1,[(P 1,True),(P 2,False)])
, (2,[(P 1,False),(P 2,True)])]

First solve this exercise manually with pen on paper. Then use SMCDEL to check your answers. Part (i) can be
done in the web interface at https://w4eg.de/malvin/illc/smcdelweb. For part (ii) you need the whole smcdel
Haskell library and find the appropriate function. See https://github.com/jrclogic/SMCDEL or use stack
unpack smcdel.

Exercise 4.6: Binary Decision Diagrams
Draw binary decision diagrams for the following formulas and statements. First try to do it by hand, then check
your results with the BDD package HasCacBDD or the SCMDEL web interface.

• p ∨ q
• (p ∧ q) → (p ∧ r)
• At least one of the propositions p, q and r is true.
• Exactly two of the propositions p, q and r are true.

Bonus Exercise 4.7: The Dining Cryptographers
Read about the Dining cryptographers problem on Wikipedia, then look at the SMCDEL formalization of it
(available in the web interface). Extend it to the case with four agents.

3

https://github.com/jrclogic/SMCDEL/blob/72c3d9d847d3356d90c4a89f74099c92ea8c1ab1/src/SMCDEL/Language.hs#L441
https://github.com/jrclogic/SMCDEL/blob/72c3d9d847d3356d90c4a89f74099c92ea8c1ab1/src/SMCDEL/Explicit/S5.hs#L70
https://w4eg.de/malvin/illc/smcdelweb
https://github.com/jrclogic/SMCDEL
https://en.wikipedia.org/wiki/Dining_cryptographers_problem

Bonus Exercise 4.8: Cheryl’s Birthday
The following is from the Singapore and Asian Schools Math Olympiad 2015. At some point it went “viral”, as
they say.

Albert and Bernard just become friends with Cheryl, and they want to know when her birthday is.
Cheryl gives them a list of 10 possible dates:

May 15, May 16, May 19, June 17, June 18, July 14, July 16, August 14, August 15, August 17

Cheryl then tells Albert and Bernard separately the month and the day of her birthday respectively.
Then the following dialogue takes place.

Albert: I don’t know when Cheryl’s birthday is, but I know that Bernard does not know too.

Bernard: At first I don’t know when Cheryl’s birthday is, but I know now.

Albert: Now I also know when Cheryl’s birthday is.

So when is Cheryl’s birthday?

Can you solve this puzzle using your own model checking code?

You can find a solution using the explicit model checker DEMO-S5 at https://malv.in/posts/2015-04-20-finding-
cheryls-birthday-with-DEMO.html and a solution using SMCDEL at https://malv.in/posts/2019-03-01-
symbolically-finding-cheryls-birthday-with-SMCDEL.html.

4

https://malv.in/posts/2015-04-20-finding-cheryls-birthday-with-DEMO.html
https://malv.in/posts/2015-04-20-finding-cheryls-birthday-with-DEMO.html
https://malv.in/posts/2019-03-01-symbolically-finding-cheryls-birthday-with-SMCDEL.html
https://malv.in/posts/2019-03-01-symbolically-finding-cheryls-birthday-with-SMCDEL.html

	Exercise 4.1: Model Checking PAL
	Exercise 4.2: Muddy Children
	Exercise 4.3: Drinking Logicians
	Exercise 4.4: Moore Sentences
	Exercise 4.5: Kripke Models and Knowledge Structures
	Exercise 4.6: Binary Decision Diagrams
	Bonus Exercise 4.7: The Dining Cryptographers
	Bonus Exercise 4.8: Cheryl’s Birthday

