
Exercises 3

module E3 where

import Data.List

Exercise 3.1: IO and read

Consider Hello World 2.0 from the lecture:

dialogue :: IO ()
dialogue = do

putStrLn "Hello! Who are you?"
name <- getLine
putStrLn $ "Nice to meet you, " ++ name ++ "!"

Extend this implementation such that it behaves as follows.

E3> dialogue
Hello! Who are you?
Bob -- user input
Nice to meet you, Bob!
How old are you?
94 -- user input
Ah, that is 6 years younger than me!

Hint: You might want a line like let age = read ageString :: Int within the do block.

Exercise 3.2: Functor

Look up the definition and the laws for Functor and Applicative. You can consult the slides of lecture 3 or
the Typeclassopedia. You can also use “:i Functor” etc. in ghci to see the definition of any type class, but
note that this does not show the laws.

Recall the definition of UnOrdPair from Exercises 2:

newtype UnOrdPair a = UOP (a,a)

Make unordered tuples a functor:

instance Functor UnOrdPair where
fmap = undefined

Then prove (on paper, or as comments here) that your definition fulfills the two functor laws:

fmap id = id
fmap (f.g) == fmap f . fmap g

Similarly, look up Applicative and define the following instance:

instance Applicative UnOrdPair where
pure = undefined
(<*>) = undefined

Check that your definition fulfills this property:

fmap f x = pure f <*> x

Then prove that your definition fulfills the four applicative laws:

1

pure id <*> == id
pure (.) <*> f <*> g <*> x = f <*> (g <*> x)
pure f <*> pure x = pure (f x)
u <*> pure y = pure ($ y) <*> u

Obvious bonus question: Can you make UnOrdPair a Monad?

Exercise 3.3: Hilbert’s Hotel
Let’s implement the famous Hilbert Hotel with laziness in Haskell.

If you don’t know it yet, watch https://youtu.be/Uj3_KqkI9Zo.

A room can be occupied by a guest (Just "Jana") or empty (Nothing). A hotel is a list of rooms:

type Guest = String
type Room = Maybe Guest
newtype Hotel = Hot [Room]

Initially, the Hotel is full. Admittedly, the guests have boring names:

initialFullHotel :: Hotel
initialFullHotel = Hot [Just $ "Guest" ++ show n | n <- [(1::Integer)..]]

To be sure that we never try to print the whole infinite hotel, here is a Show instance which only shows the first
10 rooms:

instance Show Hotel where
show (Hot rooms) = "Hot [" ++ substring ++ ", ...]" where

substring = intercalate ", " $ map show (take 10 rooms)

I promise that now you can safely type and evaluate initialFullHotel in ghci.

Accomodating a single person is easy, right?

accommodateSingle :: Hotel -> Guest -> Hotel
accommodateSingle (Hot h) newGuest = undefined

If you replaced undefined above correctly, then you should get this:

E3> accommodateSingle initialFullHotel "Bob"
Hot [Just "Bob", Just "Guest1", Just "Guest2"

, Just "Guest3", Just "Guest4", Just "Guest5"
, Just "Guest6", Just "Guest7", Just "Guest8"
, Just "Guest9", ...]

Also accomodating a finite group should be easy:

accommodateFiniteGroup :: Hotel -> [Guest] -> Hotel
accommodateFiniteGroup (Hot h) group = undefined

But what if group is infinite?

accommodateGroup :: Hotel -> [Guest] -> Hotel
accommodateGroup (Hot h) group = undefined

And what if we have a finite number of groups of infinite length?

accommodateFinitelyManyGroups :: Hotel -> [[Guest]] -> Hotel
accommodateFinitelyManyGroups (Hot h) groups = undefined -- Hint: use a fold!

Finally, what if we have infinitely many groups of infinite length?

accommodateArbitraryGroups :: Hotel -> [[Guest]] -> Hotel
accommodateArbitraryGroups (Hot h) groups = undefined

You might want to look up and use Szudzik’s Elegant Pairing Function. Click here for a presentation and click
here for an example in JavaScript.

2

https://youtu.be/Uj3_KqkI9Zo
http://szudzik.com/ElegantPairing.pdf
https://gist.github.com/antimatter15/8cb2538f4bd195e0b439560ec8c8e5b9
https://gist.github.com/antimatter15/8cb2538f4bd195e0b439560ec8c8e5b9

Exercise 3.4: Other Trees
Recall the definition of binary trees from Lecture 4. Note that we only have a-type values at the leafs.

data Tree a = Leaf a | Branch (Tree a) (Tree a)
deriving (Eq,Ord,Show)

Change the definition to also have values at each intermediate node.

Then adapt the instances below.

instance Functor Tree where
-- fmap :: (a -> b) -> Tree a -> Tree b

fmap f (Leaf x) = Leaf (f x)
fmap f (Branch left right) = Branch (fmap f left)

(fmap f right)

instance Applicative Tree where
-- pure :: a -> Tree a

pure = Leaf
-- (<*>) :: Tree (a -> b) -> Tree a -> Tree b

(<*>) ftree (Leaf x) = fmap ($ x) ftree
(<*>) ftree (Branch xl xr) = Branch (ftree <*> xl)

(ftree <*> xr)

instance Foldable Tree where
-- foldr :: (a -> b -> b) -> b -> Tree a -> b

foldr f y (Leaf x) = f x y
foldr f y (Branch l r) = foldr f (foldr f y l) r

instance Traversable Tree where
-- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

traverse g (Leaf x) = Leaf <$> g x
traverse g (Branch l r) = Branch <$> traverse g l <*> traverse g r

3

	Exercise 3.1: IO and read
	Exercise 3.2: Functor
	Exercise 3.3: Hilbert’s Hotel
	Exercise 3.4: Other Trees

