
Exercises 2

module E2 where

import Data.List

Exercise 2.1: Show and Eq

This is an exercise to define instances of the Show and Eq type classes. We want to have a data type for unordered
pairs, where (4, 5) == (5, 4).

newtype UnOrdPair a = UOP (a,a)

Implement a Show and an Eq instance such that we get:

GHCi> show (UOP (1,4))
UOP (1,4)
GHCi> show (UOP (4,1))
UOP (1,4)
GHCi> UOP (1,4) == UOP (4,1)
True

instance (Show a, Ord a) => Show (UnOrdPair a) where
show (UOP (x,y)) = undefined

Hint: start by distinguishing whether we have x < y or not.

instance Ord a => Eq (UnOrdPair a) where
(==) (UOP (x1,y1)) (UOP (x2,y2)) = undefined

Hint: Use || for “or” and describe the two cases in which the pairs should be equal.

Exercise 2.2
The Luhn Algorithm is a formula for validating credit card numbers. Give an implementation in Haskell. The
type declaration should run:

luhn :: Integer -> Bool
luhn = undefined

This function should check whether an input number satisfies the Luhn formula. You might want to use the
following function. (Look up read on hoogle!)

digits :: Integer -> [Integer]
digits n = map (\x -> read [x]) (show n)

Next, use luhn to write functions for checking whether an input number is a valid American Express Card,
Master Card, or Visa Card number. Consult Wikipedia for the relevant properties.

isAmericanExpress, isMaster, isVisa :: Integer -> Bool
isAmericanExpress = undefined
isMaster = undefined
isVisa = undefined

Bonus question: Write a function that generates (random?) credit card numbers!

Exercise 2.3
(If you prefer Modal Logic over Search Puzzles, jump ahead to 2.4.)

A farmer is on one side of a river. He has a wolf, a goat and a cabbage:
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data Item = Wolf | Goat | Cabbage | Farmer deriving (Eq,Show)
data Position = L | R deriving (Eq,Show)
type State = ([Item], [Item])

start :: State
start = ([Wolf,Goat,Cabbage,Farmer], [])

He can move to the other side of the river and may carry an animal with him:

type Move = (Position, Maybe Item)

Implement this (look up the ++ and \\ functions):

move :: State -> Move -> State
move (l,r) (L, Just a) = (l ++ [Farmer,a], r \\ [Farmer,a])
move (l,r) _ = undefined -- what are the other cases?

For example, we should have:

*E2> move start (R, Just Cabbage)
([Wolf,Goat], [Cabbage,Farmer])

But this particular move would be a bad idea. Because whenever the farmer is not there, the wolf will eat the
goat and the goat will eat the cabbage! Implement this:

someoneGetsEaten ::[Item] -> Bool
someoneGetsEaten xs = undefined

We want to avoid states where someone gets eaten and we are done if everyone is on the right side:

isBad, isSolved :: State -> Bool
isBad (l,r) = someoneGetsEaten l || someoneGetsEaten r
isSolved (l,_) = null l

Your goal now is to implement a search algorithm to find a solution. First, given a state, what can the farmer
do?

availableMoves :: State -> [Move]
availableMoves (l,r) = undefined

We now do depth-first search. To prevent infinite loops, prev tracks previous states.

solve :: [State] -> State -> [[Move]]
solve prev s | isSolved s = [ [] ]

| otherwise = [ m : nexts | m <- availableMoves s
, undefined -- TODO do not move into "prev"
, undefined -- TODO avoid if state isBad
, nexts <- solve (s:prev) (move s m) ]

allSolutions :: [[Move]]
allSolutions = solve [] start

firstSolution :: [Move]
firstSolution = head allSolutions

Can you also find an optimal solution, with the fewest moves? Hint: Look up the functions minimumBy and
Data.Function.on.

See also https://malv.in/posts/2021-01-09-depth-first-and-breadth-first-search-in-haskell.html.

Exercise 2.4
Recall the Modal Logic implementation:

type World = Integer
type Universe = [World]
type Proposition = Int
type Valuation = World -> [Proposition]
type Relation = [(World,World)]
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data KripkeModel = KrM Universe Valuation Relation

data ModForm = Prp Proposition
| Not ModForm
| Con ModForm ModForm
| Box ModForm
deriving (Eq,Ord,Show)

makesTrue :: (KripkeModel,World) -> ModForm -> Bool
makesTrue (KrM _ v _, w) (Prp k) = k `elem` v w
makesTrue (m,w) (Not f) = not (makesTrue (m,w) f)
makesTrue (m,w) (Con f g) =

makesTrue (m,w) f && makesTrue (m,w) g
makesTrue (KrM u v r, w) (Box f) =

all (\w' -> makesTrue (KrM u v r,w') f) ws where
ws = [ y | y <- u, (w,y) `elem` r ]

In this exercise you should extend this implementation in various ways.

Add a function to check for truth in a whole model:

trueEverywhere :: KripkeModel -> ModForm -> Bool
trueEverywhere = undefined

Add diamonds, the dual of boxes. You can either add a new constructor Dia to the line data ModForm = ...
above or define diamonds as an abbreviation in terms of Not and Box.

dia :: ModForm -> ModForm
dia = undefined

When should we call two Kripke models equal? For example, the universe should be the same set, but the order
of worlds should not matter. Uncomment the following and implement an instance Eq KripkeModel:

-- instance Eq KripkeModel where
-- (==) = undefined

You should know what a bisimulation is. If not, see Section 2.2 of the BRV book. Write a function that checks a
given bisimulation:

type Bisimulation = [(World,World)]

checkBisim :: KripkeModel -> KripkeModel -> Bisimulation -> Bool
checkBisim = undefined

Kripke models where all relations are equivalence relations are often used in epistemic logic to model a strong/hard
notion of knowledge. After the the axioms of the logic of such models, they are also called S5 models.

Representing equivalence relations with Relation = [(World,World)] is a big waste of space. For example,
the equivalence relation

[(0,0),(0,1),(1,0),(1,1),(2,2)]

can also be represented much shorter as a list of lists: [[0,1],[2]]. You can also thinkg of this as a partition:
each of the inner lists is an equivalence class.

Implement semantics in this way:

type EquiRel = [[World]]

data KripkeModelS5 = KrMS5 Universe Valuation EquiRel

makesTrueS5 :: KripkeModelS5 -> ModForm -> Bool
makesTrueS5 = undefined

It is annoying that we have to rename makesTrue for S5 models. We can in fact also use the same name. If you
are curious how, look up how to define your own new type class and a polymorphic makesTrue.

Some more ideas what you could do:
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• Use QuickCheck to investigate Modal Logic: First, implement instance Arbitrary KripkeModel and
instance Arbitrary ModForm. Then check some modal formulas. Note that random testing will never
allow you to show validity, but it can refute it.

Note: to make QuickCheck available to GHC and therefore to make “import Test.QuickCheck” work
you might first have to run “cabal install --lib QuickCheck”, but this depends on how you installed
GHC and other tools.

• Write a function that takes a formula and outputs nice LaTeX code.

• (Warning: this is more than a simple question.) Visualize Kripke models by writing a function that takes
a model and returns code for the dot program from https://www.graphviz.org/. Some old code for this by
Malvin: https://w4eg.de/malvin/illc/kripkevis/. A better way is to use the graphviz Haskell library.

Note: Enjoy all the errors!
Besides errors and type checking, GHC can help you with warnings. You should start it with -Wall like this:

ghci -Wall E2.lhs

Another great tool to improve your Haskell code is hlint. Install it with stack install hlint and then run
hlint Bla.lhs to check a file. (Your editor might already show you those hints.)

For this exercise, reload your E1.lhs and E2.lhs files with all warnings enabled and fix any warnings you get.
Also run hlint on both files, try to understand the suggestions and follow them. (Later we will aim for zero
warnings and zero hlint sugggestions!)
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