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Abstract. It is known that without synchronization via a global clock
one cannot obtain common knowledge by communication. Moreover, it
is folklore that without exchanging higher-level information arbitrary
higher-level shared knowledge cannot be achieved.

Here we make this result precise. We use epistemic logic to formally define
“everyone knows that everyone knows that everyone knows all secrets”
and then prove that this statement is unsatisfiable.
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1 Introduction

Consider a group of agents that initially each know a unique secret. The agents
then make one-to-one phone calls during which they always share all the secrets
they know. So-called gossip protocols in this simple model provide an efficient
way to spread information using peer-to-peer communication.

Even when the gossiping agents only exchange secrets and no additional
information, they also obtain higher-order knowledge: they learn what other
agents know, or even what other agents know about yet other agents, and so
on. But it is known that without synchronization via a global clock one cannot
obtain common knowledge by peer-to-peer communication [5]. It is folklore that
only the first level of shared knowledge can be achieved, but not the higher levels.
In this article we make this result precise using epistemic logic.

We start with two examples that illustrate interesting cases of when and how
agents can obtain higher-order knowledge.

Example 1. Suppose we have a set of four agents {a, b, c, d}. Consider the se-
quence of calls ab.cd.ac.bd.ad.bc.ab.cd and the results shown in Table 1. After
the fourth call bd everyone is an expert, i.e. they know all secrets. In both of the
last two calls ab and cd the two agents involved become so-called super experts,
i.e. they know that everyone knows all secrets. The example shows in particular
that two agents can become super experts at the same time.
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a b c d initial state
ab→ ab ab c d
cd→ ab ab cd cd
ac→ abcd A C ab abcd A C cd
bd→ abcd A C abcd B D abcd A C abcd B D everyone is an expert
ad→ abcd A CD abcd B D abcd A C abcd AB D
bc→ abcd A CD abcd BCD abcd ABC abcd AB D
ab→ abcd ABCD abcd ABCD abcd ABC abcd AB D a, b become super experts
cd→ abcd ABCD abcd ABCD abcd ABCD abcd ABCD c, d become super experts

Table 1. Results of ab.cd.ac.bd.ad.bc.ab.cd. A lower case y in column x means x knows
the secret of y; an upper case Y means x knows that y is an expert. Therefore, “abcd”
denotes an expert and “ABCD” denotes a super expert.

a b c d initial state
ac→ a c b a c d
ad→ a cd b a c a cd
ac→ a cd b a cd a cd a learns d from c
bc→ a cd abcd BC abcd BC a cd
ac→ abcd ABC abcd BC abcd ABC a cd a is lucky about b

Table 2. Results of ac.ad.ac.bc.ac including a lucky call.

More interestingly, an agent may learn that another agent is an expert with-
out calling that agent. We will call this a lucky call and this notion plays a
key role in the proof of our main result. In a synchronous setting where agents
observe that other calls happen, lucky calls happen frequently. But in the asyn-
chronous setting we consider here agents only observe their own calls. This limits
what agents learn about each other and makes lucky calls noteworthy.

Example 2. Again suppose we have a set of four agents {a, b, c, d} and consider
the call sequence ac.ad.ac.bc.ac, with results shown in Table 2. Here agent a
learns in the final call ac that a, b, c are experts. Because b is not involved in this
call we say that this a lucky call and say that a is lucky about b. We will show
that this sequence is typical: in any call sequence each agent can only once be
lucky and at most n− 2 agents out of n agents (for n ≥ 4) can be lucky.

Our main contribution here is the proof that “everyone knows that everyone
knows that everyone knows all secrets” is unsatisfiable. On the way to this result
we also provide a new definition of the “causal cone” of an agent or a subset of
agents in a call sequence. This article is structured as follows. We discuss related
work in Section 2 and provide definitions in Section 3. In Sections 4 we define
causal cones and in Section 5 we use them to characterise lucky calls. Section 6
contains our main result.
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2 Related Work

The “gossip problem” as introduced above is also known as the “telephone prob-
lem” and goes back (at least) to the article [9] from 1971. The main classical
result is that only a linear amount of calls (2n− 4 if we have n agents) is needed
to ensure that everyone knows all secrets. We refer to [6] for a survey of variants
of the gossip problem, for example over different graphs or using broadcasting.

Most of the classical results assume a central scheduler, i.e. an authority
that decides in which order calls should be made. More recently, decentralised
gossip has been studied, where agents decide on their own whom they should
call next, and multiple logics have been developed to analyse the gossip problem
and different protocols [1,2,3]. Some of these logics include not only statements
to say that agents know a secret, but they also provide general “an agent knows
that ϕ” modalities common in epistemic logics, and thereby allow us to discuss
the higher-order knowledge effects of gossip.

The question which higher-order knowledge can be achieved by communi-
cation between agents goes back to the classic problem of the Byzantine Gen-
erals [8]. In general it is impossible to achieve common knowledge in an asyn-
chronous distributed system, as shown in [5]. However, shared knowledge can be
achieved with messages of the form “I know that this other agents knows that
. . . ”. This has been studied in [7] where agents always tell each other all they
know. Concretely, among n agents shared knowledge of level k can be achieved
with (k + 1)(n − 2) many calls. Here we only allow agents to exchange secrets
and do not allow them to exchange any other kind of information.

Our result is most related to [1,3] who both investigate when the truth of for-
mulas stabilises during gossip protocol execution, including the case of the most
general gossip protocol where any call can be made at any time and where agents
only observe their own calls (setting 〈•,♦, β〉 in [3], also called asynchronous ANY
in [4]). This is the same setting as ours.

By different methods the authors of [1] and those of [3] demonstrate that
making new calls no longer affects the truth of epistemic formulas at some stage.
Although the objectives of these publications were different, namely decidabil-
ity of logics for gossip or correctness of gossip protocols, there is some overlap
in methods. They show that in any (fairly scheduled) call sequence, with the
standard call semantics that only secrets are exchanged in a call, at some stage
further calls have no informational effect — such calls are redundant. This was
relevant to observe for gossip protocols where the goal was that all agents be-
came experts, because it showed that, in principle, even if one were to consider
epistemic goals such as knowing that others are experts, things would eventually
come to a stop. But they did not consider any specific epistemic goals.

In [1] only epistemic formulas of depth 1 were considered (the crucial result
is [1, Lemma 21]), but here we focus on depth 2 and higher which in [1] is only
mentioned as a generalization for future work.

The authors of [3] considered arbitrary epistemic formulas. However, there
the comparison to our result stops: [3, Prop. 5.5, Cor. 5.6] shows that formulas
of any epistemic depth remain true forever or false forever after call sequences
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of certain length (bounded by a polynomial in terms of the number of agents).
Hence a formula like EEExpA must remain true forever or false forever after fur-
ther extending call sequences. But the authors of [3] did not investigate specific
formulas. Here we show that EEExpA remains false forever.

3 Syntax and Semantics

We assume a finite set of at least four agents A = {a, b, c, d, . . . } throughout this
article. This assumption is needed for our main results. Some lemmas may also
hold for less than four agents, but these are boundary cases of little interest.

Each agent holds a single secret. The agents communicate with each other
through telephone calls. During a call between two agents x and y, they exchange
all the secrets that they knew before the call.

A call is a pair of agents (x, y) ∈ A×A for which we write xy. Agent x is the
caller and agent y is the callee. Given call xy, call yx is the dual call. An agent
x is involved in a call yz iff y = x or z = x. In this contribution the direction
of the call does not matter, so it only matters if an agent is involved in a call.
We will therefore arbitrarily write xy or yx for the call between x and y, where
we often prefer the lexicographic order of agents. A call sequence is defined by
induction: the empty sequence ε is a call sequence. If σ is a call sequence and xy
is a call, then σ.xy is a call sequence. We write |σ| to denote the length of a call
sequence.

Given call sequences τ, σ, by induction on the length of σ we further define
that τ is a subsequence of σ. This is the inductive definition: ε ⊆ ε, and if τ ⊆ σ
then τ, τ.ab ⊆ σ.ab and τ, ab.τ ⊆ ab.σ.

If σ = ρ.τ , then ρ is a prefix of σ, denoted as ρ v σ, and τ is the complement
of ρ in σ, where τ is also denoted σ \ ρ.

Definition 1 (Language). For a finite set of agents A the language L is given
by ϕ ::= ba | ¬ϕ | ϕ∧ϕ | Kaϕ where a, b ∈ A. Let → and ∨ be defined as usual.

The ϕ are called formulas. The atomic formula ba reads as ‘agent a has the secret
of b’ or ‘agent a knows the secret of b’. The formula Kaϕ reads ‘agent a knows
that ϕ is true’. We also define Eϕ :=

∧
a∈AKaϕ and read it as ‘everyone knows

that ϕ’ (Eϕ is also known as shared or mutual knowledge of ϕ).
Agent a is an expert if she knows all the secrets, formally

∧
b∈A ba, abbre-

viated as Expa. Everyone is an expert is represented by the formula ExpA :=∧
a∈A

∧
b∈A ba. Agent a is a super expert if she knows that everyone is an expert,

formally KaExpA. Therefore, EExpA means that everyone is a super expert and
EEExpA means that everyone knows that everyone is a super expert. The main
result we prove in this article is that the latter cannot be achieved, i.e. that
EEExpA is not satisfiable.

Let B ⊆ A. If a ∈ B knows the secrets of all the agents in B, a is a B expert,
and if a knows that all the agents in B know the secrets of all the agents in B, a
is a B super expert. We find it convenient to have some additional notation for
such matters:

∧
b∈B Kbϕ is denoted EBϕ, and ‘a ∈ B knows the secrets of all the
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agents in B’ is denoted Expa(B) with similar notational variations as before, so
that EBExpB(B) denotes that all in B are B super experts (and for B = A we
omit the parameter).

The epistemic relation defined below models that agents only observe the calls
they are involved in. In particular there is no global clock and the conditions are
asynchronous, meaning agents do not know how many calls have taken place.

Definition 2 (Epistemic relation). Let a ∈ A. The epistemic relation ∼a is
the smallest equivalence relation between call sequences such that:

– ε ∼a ε

– if σ ∼a τ and a /∈ {b, c}, then σ.bc ∼a τ

– if σ ∼a τ , and for all c, σ |= cb iff τ |= cb, then σ.ab ∼a τ.ab

Definition 3 (Semantics). Let call sequence σ and formula ϕ ∈ L be given.
We define σ |= ϕ by induction on the structure of ϕ. Moreover, we define the
valuation of atoms by induction on σ, for any a, b ∈ A with a 6= b.

ε |= ab iff a = b
σ.ab |= ca iff σ |= ca or σ |= cb for all c ∈ A
σ.ab |= cb iff σ |= ca or σ |= cb for all c ∈ A
σ.ab |= cd iff σ |= cd for all c, d ∈ A with d /∈ {a, b}
σ |= ¬ϕ iff σ 6|= ϕ
σ |= ϕ ∧ ψ iff σ |= ϕ and σ |= ψ
σ |= Kaϕ iff τ |= ϕ for all τ such that σ ∼a τ

A formula ϕ is valid, notation |= ϕ, iff for all call sequences σ we have σ |= ϕ.
We abbreviate the set of secrets know by a after σ with a(σ) := {c ∈ A | σ |= ca}.

If in call ab agent a or b becomes an expert, then the other agent must also be
an expert after this call. In contrast, if in a call ab agent a or b becomes a super
expert, then the other agent does not have to be a super expert after this call.

4 Causal Relation and Causal Cone

We now introduce additional notation for specific subsequences of calls. The goal
is to make it easy to select and reason about those calls that are relevant for a
specific subset of agents.

Definition 4 (Causal relation). For any sequence σ and calls ab, cd ∈ σ, we
write ab < cd iff σ has shape σ1.ab.σ2.cd.σ3 (i.e. this occurrence of the call ab in
σ is before this occurrence of the call cd in σ). We define the relation �0 over
call occurrences in σ by ab �0 cd :⇔ ab < cd and {a, b} ∩ {c, d} 6= ∅. Let �
be the reflexive transitive closure of �0. Calls ab and cd are causally related iff
ab� cd.
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Definition 5 (Causal cone). Given a call sequence σ and a set of agents
B ⊆ A, the causal cone σB

� is defined by induction:

εB� := ε (σ.ab)
B
� :=

{
σ
B∪{a,b}
� .ab if a ∈ B or b ∈ B
σB
� otherwise

For σ
{a,b}
� we write σab

�. Furthermore, let σB
6� be the complement of σB

� in σ.

Intuitively, given a call sequence σ.ab, the sequence σab
� is the subsequence of

σ of which all calls are causally related to the final call ab (it is the causal cone
of ab), in other words σab

� is the subsequence consisting of all cd ∈ σ such that
cd� ab in σ.ab. Also note that we can identify σa

� with the causal cone of the
last call in σ involving a. In other words, σa

� determines what a knows after σ.
The complement σB

6� are the calls that do not determine what a knows after

σ. For example, σab
6� consists of all cd ∈ σ that do not determine what a or b

know after σ.
The causal relations between calls are only interesting when there are at least

four agents. If there are two or three agents, all calls are causally related.

Lemma 1. Let call sequence σ, group B ⊆ A of agents, and agent a ∈ B be
given. Then (i) σ ∼a σ

B
� and also (ii) σ ∼a σ

B
�.σ

B
6�.

Proof. We prove (i) by induction on the length of σ. Note that we declared B and
a ∈ B after σ, hence these may occur differently in our inductive assumption.
For B ∪ {a} we write B + a and similarly for B ∪ {b, c} we write B + bc.

Case σ = ε. This is by definition as εB� = ε.

Case σ = τ.ab. By the definition of � we have (τ.ab)
B
� = τB+b

� .ab (we recall

that a ∈ B). By inductive assumption we have τ ∼a τ
B+b
� and also τ ∼b τ

B+b
� ,

so that agent b holds the same secrets after both. Therefore, by definition of ∼a,
we have τ.ab ∼a τ

B+b
� .ab. Combining this we obtain τ.ab ∼a (τ.ab)

B
�.

Case σ = τ.bc with b, c 6= a and b ∈ B or c ∈ B. By the definition of �
and because b or c is in B, (τ.bc)

B
� = τB+bc

� .bc. By induction, τ ∼a τB+bc
� ,

and from that, the fact that b, c 6= a, and the definition of ∼a we also obtain
τ.bc ∼a τ

B+bc
� .bc, and therefore τ.bc ∼a (τ.bc)

B
�.

Case σ = τ.bc with b, c /∈ B. We have that τ.bc ∼a τ by the definition of ∼a,
because b, c 6= a. By inductive assumption, τ ∼a τ

B
�. By the definition of � and

because b, c 6= a, τB� = (τ.bc)
B
�. Combining all this we obtain τ.bc ∼a (τ.bc)

B
�.

We now prove (ii). From σ ∼a σB
� it follows that σ ∼a σB

�.σ
B
6� by the

definition of ∼a and the observation that a does not occur in any call in σB
6�. ut

An instantiation of Lemma 1 is that σ ∼a σ
a
�.σ

a
6� and σ ∼a σ

a
�: a considers it

possible that all not causally related calls, if any, take place after her last call.
Moreover, note that we have (σ.ab)

ab
� = σab

�.ab and (σ.ab)
ab
6� = σab

6� by Defini-
tion 5. Hence Lemma 1 also implies the following corollary.

Corollary 1. Let call sequence σ and call ab be given. Then σ.ab ∼a σ
ab
�.ab.σ

ab
6�

and also σ.ab ∼a σ
ab
�.ab.
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5 Lucky Calls

In the introduction we informally introduced the notion of a lucky call. The
following definition makes this notion precise and the goal of this section is to
characterise when lucky calls can happen.

Definition 6. An agent a is lucky in a call ab if she learns in that call that
another agent c is an expert. Formally, given a call sequence σ.ab and c 6∈ {a, b},
agent a is lucky about c in ab iff we have σ 6|= KaExpc and σ.ab |= KaExpc.

In subsequent proofs we show and use that only A− b super experts, who know
that all but one agent b know the secrets of all but one agent b, can be lucky. We
stress that our results only concern asychrony. In a synchronous setting, agents
are lucky all the time and this is nothing special.

Lemma 2. When two agents become experts in a call, they cannot be lucky.

Proof. Let σ and a, b be given such that σ 6|= Expa, σ 6|= Expb, and σ.ab |= Expa

as well as σ.ab |= Expb. We show that for all c 6= a, b, σ.ab 6|= KaExpc.
From Corollary 1 it follows that σ.ab ∼a σ

ab
�.ab. No call in σab

� may contain
an agent who is an expert, as the causal relation would then have made a or b
an expert before call ab. Therefore σab

� 6|= Expc for all c ∈ A other than a or b,
and because of that and the semantics of calls also σab

�.ab 6|= Expc. From that
and σ.ab ∼a σ

ab
�.ab it follows that σ.ab |= ¬KaExpc.

Similarly we show (replace ∼a by ∼b) that σ.ab 6|= KbExpc. ut

Lemma 3. When two agents become experts, neither becomes a super expert.

Proof. We recall that there at least four agents. By Lemma 2, after the call
wherein two agents become experts, they both remain uncertain whether the
two or more agents not involved in the call are expert. ut

We already showed (Lemma 2) that when two agents become experts in a
call, they cannot be lucky. Now we consider the case where one of the agents
was already an expert before the call. We want to characterise when the other
agent who becomes expert can be lucky.

As an example, recall the call sequence ac.ad.ac.bc.ac from Example 2 wherein
a learns that b and c are expert in the final call ac. In other words, a’s final call
ac is lucky. After the prefix ac.ad.ac, a is a super expert for all agents but one
(for {a, c, d}): a knows that a, c, d know all the secrets of a, c, d. This allows a to
learn in the final call ac that someone from those all but one agents a, c, d must
have called the one agent b and clearly it was not herself. Agent a learns in the
final call that c or d called b, not that c called b.

We will now show that this typical case is also the only case.
Although we assume that there are at least four agents, the next result also

holds for three agents. In call sequence ac.bc.ac, the third call is lucky and a
then learns that c and b are experts. In the first call, a becomes a {a, c} super
expert. In the second call ac, agent a that c must have called b, and thus learns
that b and c are experts, and thus becomes a {a, b, c} super expert.
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Lemma 4. An agent becoming an expert can only be lucky if she is a super
expert for all agents but one. Formally: Let a, b, c ∈ A and σ be given and suppose
σ 6|= Expa and σ.ac |= Expa. Then σ.ac |= KaExpb iff σ |= KaExpA−b(A− b).

Proof. Suppose we have σ 6|= Expa and σ.ac |= Expa. We show the two directions.
(⇒): We show the requested by contraposition: if a is not a A− b super expert
(σ 6|= KaExpA−b(A− b)), then a cannot be lucky about b (i.e. σ.ac 6|= KaExpb).

Intuitively, there are two ways in which non-expert a can be not a A − b
super expert: when she does not know enough or when she knows too much. In
the first case a does not know the secret of b but she is not a super expert. In
the second case a knows the secret of b, as this is, in a way, ‘more’ than being
an A− b super expert who is not an expert, which implies ignorance of b.
Case a does not know b. If σ |= ¬ba then a considers it possible that b has not
yet made a call and thus only knows its own secret. In that case, as a is not a
A− b super expert, then a considers it possible that there is an agent d ∈ A− b
such that d does not know all of A− b’s secrets, that is, then there is a e ∈ A− b
(where e may be a or c) such that d does not know the secret of e. Agent a thus
considers it possible that the next two calls are db.dc and that b is not involved
in further calls. After db, agent b is not an expert because neither b nor d know
the secret of e. In dc agent d informs c of the secret of b. This can still be followed
by any call sequence τ of calls between the agents of A − ba making c expert
before call ac. Altogether we get σ.ac ∼a σ.db.dc.τ.ac and σ.db.dc.τ.ac 6|= Expb.
Therefore σ.ac 6|= KaExpb.
Case a knows b. If σ |= ba, then a cannot also be a A − b super expert as this
implies that a also knows all other secrets and therefore is an expert, which
contradicts our assumption. It remains to show that σ.ac 6|= KaExpb.

As non-expert a became expert in call ac, a learns a secret of some agent d
in that call. As a already knew the secret of b, we must have d 6= b.

First assume there is a last call in σ between a and b. In that call ab, a
therefore did not learn the secret of d. So after this call a still considers it
possible that d only knows its own secret.

– If after call ab agent a also knows the secret of c, then a considers it possible
that c does not know d. If then the subsequent calls are bc.cd and b was not
involved in further calls, then after call bc agent b still does not know d so b is
not an expert. The part bc.cd can still be followed by any sequence τ of calls
between the agents of A− ba making c expert before call ac. Altogether we
get σ.ac ∼a σ.bc.cd.τ.ac and σ.bc.cd.τ.ac 6|= Expb. Therefore σ.ac 6|= KaExpb.

– If after call ab agent a does not know the secret of c, then b also does not
know c, and a considers it possible that subsequently bd.cd took place. After
bd agent b is not an expert (because b still does not know c). Call cd informs
c of the secret of b. This can still be followed by any number of calls between
the agents of A−ba making c expert before call ac. Therefore σ.ac 6|= KaExpb.

Second, assume there was no call in σ between a and b. Then, given that
a knows b and thus knows that a call took place between b and some agent e
(where e may be c) in A − ba, we again conclude that b did not know d after
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that call nor after any call before the last call by a in σ (which happens to be
the final call in σa

�). Agent a considers a call sequence possible (with prefix σa
�)

wherein after her last call b did not make further calls and that b’s secret was
instead initially spread by agent e among the A− ba, and so on until c became
expert. Therefore also in this case, σ.ac 6|= KaExpb.

(⇐): Suppose σ |= KaExpA−b(A − b). Note that we not only have σ 6|= Expa,
but also σ |= Ka¬Expa. Moreover, we claim that σ |= Expc. To see this, note
that after σ agent a is an A− b super expert, so a knows that c knows all secrets
except b. Therefore, if a becomes expert in the last a call with c, then c must
have learnt another secret. This can only be the secret of b. Therefore a learnt
that c was an expert after any τ ∼a σ.

In order to show σ.ac |= KaExpb, let τ be arbitrary such that τ.ac ∼a σ.ac.
By definition of ∼a we have τ ∼a σ. From σ |= Expc we get c(τ) = c(σ) = A. It
remains to show that τ |= Expb. Also note that c(τ) = A implies τ |= bc.

From τ ∼a σ as well as σ |= KaExpA−b(A− b) and σ |= Ka¬Expa we obtain
τ |= ExpA−b(A− b) and τ |= ¬Expa.

These two imply that τa� |= ¬bd for any d 6= b (b does not occur in τa�) and
therefore in particular that τa� |= ¬bc.

From τa� |= ¬bc whereas τ |= bc it follows that τa6� must contain a call bd
involving b and some agent d where either d = c or there is a subsequent call ce
involving c (where d, e 6= a). Because d(τa�) = A−b for any such d, in the call bd
agent b becomes an expert. (Also, ce explains how agent c became an expert.)

Therefore τ |= Expb, and as τ was arbitrary such that τ.ac ∼a σ.ac this shows
that σ.ac |= KaExpb. ut

We can conclude from Lemma 4 that if σ |= EA−bExpA−b(A−b), so when all
agents in A− b are A− b super experts, and if also no agent in A− b is expert,
all but one of those can be lucky in the same call sequence. To see this, after σ
let some agent c call b. Let now all agents in A − bc call c. Then they all also
learn in that call that b is expert. Given |A| = n agents, we therefore get n− 2
many lucky calls.

Example 3. With 4 agents we can have 2 lucky calls. Recall ac.ad.ac.bc.ac from
Example 2 wherein a learns that b and c are expert in the final call ac. Now con-
sider the expanded sequence ac.ad.ac.cd.bc.ac.cd: after ac.ad.ac.cd, all of a, c, d
know that all of a, c, d know all secrets of a, c, d. In penultimate call ac, a learns
that b and c are expert, and in final call cd, d learns that b and c are expert.

6 Main Result

Lemma 5. An agent cannot become an expert and a super expert in the same
call.

Proof. Suppose a becomes expert in ac, i.e. σ 6|= Expa and σ.ac |= Expa. We need
to show that σ.ac 6|= KaExpA. From σ 6|= Expa we know there must be a d ∈ A
such that σ |= ¬da. As there are at least four agents, there must be a b 6∈ {a, c, d}.
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From σ |= ¬da we get σ 6|= Expa(A− b) and thus σ 6|= KaExp(A−b)(A− b). Now
by Lemma 4 we have σ.ac 6|= KaExpb. This implies σ.ac 6|= KaExpA. ut

Lemma 6. An agent becoming a super expert considers it possible that the other
agent involved in that call did not become a super expert.

Proof. Let σ.ab be a call sequence wherein agent a becomes super expert in final
call ab. From Lemma 5 we conclude that a was already expert after σ.

Suppose that b became expert in the call ab. Then also from Lemma 5 we
conclude that b did not become a super expert in the call ab. As a considers
the actual call sequence possible, we infer that agent a then considers it possible
that agent b is not a super expert after σ.ab.

Thus we can assume that b already was an expert after σ. As a was expert
before call ab, a became super expert by learning in call ab that b is expert.

First suppose a considers possible that b made a lucky call in σ. The lucky
call was not with a, as a would then already have known that b is an expert. So
let that call be bc with some agent c 6= a. If in that call b also learns that d is
expert, where d 6= a, c, then a considers possible that the call instead of bc was
bd. In call bd agent b only learns that d is an expert (we recall that by Lemma 4
agent b must have been an A − d superexpert before that call), and does not
learn that c is expert. So a considers a call sequence possible wherein b was not
lucky when he became expert, and therefore when becoming expert remained
uncertain whether some other agent c is expert.

We continue the argument by reasoning about this agent c.
Suppose a learnt that c is expert in lucky call ad. Then a considers possible

that all further calls involving c were instead involving d except for further calls
ac. After this call sequence b does not know that c is expert, so b is not a super
expert, so a considers possible after σ.ab that b is not a super expert.

Now suppose that ac is the first call in σ after which a knows that c is expert.
We now distinguish four cases by whether c and b are experts before the call ac.
1 Suppose c was already expert before that call ac.
1.1 If b became expert before call ac in call bd with d 6= c, b was ignorant whether
c is expert after that call (we assumed bd was not lucky), replace bd by bd.cd
in the call sequence between bd and ac, and replace all further occurrences of c
except in further calls ac by d. This call sequence is indistinguishable for a and
preserves that b does not know that c is expert (after final call ab). Therefore a
considers possible after σ.ab that b is not a super expert.
1.2 If b became expert after call ac in call bd with d 6= c, replace all subsequent
occurrences of c except in calls ac by d. (We need not change any calls between
ac and bd, as we assumed that b does not learn whether any other agent than
d is expert in call bd, which includes agent c.) Then b does not know after final
call ab that c is expert. Therefore a considers possible after σ.ab that b is not a
super expert.
2 Suppose c became expert in that call ac.
2.1 If b became expert before ac in bd with d 6= c, agent a considers possible
that all further calls after ac involving c were instead by d, except for further
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occurrences of ac. We need not change any calls involving c between bd and ac:
note that this cannot have been bc as that would have made c expert before ac
contrary to our assumption. This call sequence preserves that b does not know
whether c is expert after final call ab. Therefore a considers possible after σ.ab
that b is not a super expert.
2.2 If b became expert after ac in bd with d 6= c agent a considers possible all
further calls after bd involving c were instead by d except for future occurrences
of ac. Now consider the calls involving c between ac and bd: we need not change
any of those as we assumed that b only learnt that d is expert in call bd. This
call sequence preserves that b does not know whether c is expert after final call
ab. Therefore a considers possible after σ.ab that b is not a super expert.

We have exhaustively investigated all cases and this ends the proof. ut

In Lemma 6 it is important to observe that the agent c that agent a remains
uncertain about is different from the agent b involved in the call wherein she
became super expert. This will be used in the final theorem.

Example 4. As an example of Lemma 6, recall the sequence ab.cd.ac.bd.ad.bc.ab
from Example 1 above where a and b become super experts in the last call. It is
indistinguishable for a from call sequence ab.cd.ac.bd.ad.ab after which b is not
a super expert. Alternatively we could replace bc by bd in the actual sequence.

With Lemma 6 we can now prove our main result.

Theorem 1. EEExpA is unsatisfiable.

Proof. Let ρ be an arbitrary call sequence. We show that ρ 6|= EEExpA. If
ρ 6|= EExpA, then clearly ρ 6|= EEExpA. Hence we assume that ρ |= EExpA.

Consider any agent a becoming a super expert in ρ, in other words choose σ
and τ such that ρ = σ.ab.τ where in call ab agent a becomes a super expert. We
will show that ρ 6|= KaKbExpc for some c ∈ A.

From Lemma 6 it follows that after σ.ab agent a considers possible a call
sequence σ′.ab after which b is not a super expert. Therefore, b considers possible
a call sequence σ′′.ab that does not satisfy ExpA, that is, σ′′.ab does not satisfy
Expc for some c ∈ A. Clearly we must have that c 6= a (because b learnt that a
is an expert in the call ab). Formally, we have: σ.ab ∼a σ

′.ab and σ′.ab ∼b σ
′′.ab

and σ′′.ab |= ¬Expc. The last implies σ′′ |= ¬Expc.
The sequence σ.ab.τ is indistinguishable for a from σ.ab.τ ′ where τ ′ is τ

without all calls involving b but not a. This is because no secrets are exchanged
in any call in τ , because all agents are already experts (because a is a super
expert after σ.ab).

For the same reason, σ.ab.τ ′ is indistinguishable for b from σ.ab.τ ′′ where
τ ′′ is τ ′ restricted to calls involving b. Call sequence τ ′′ is a finite and possibly
empty sequence consisting only of calls ab. We can write abn for that, where
n ∈ N is the number of occurrences of ab in τ (and τ ′).

First, from σ.ab ∼a σ.ab (reflexivity of ∼a), τ ∼a τ ′, and the fact that
all are experts before τ and τ ′ (so no new secrets are learnt in calls) we get
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σ.ab.τ ∼a σ.ab.τ
′. Then, from the assumption σ.ab ∼a σ

′.ab, τ ′ ∼a τ
′ (reflexivity

of ∼a again), and that all are experts before τ ′, we get σ.ab.τ ′ ∼a σ′.ab.τ ′.
Finally, from σ.ab.τ ∼a σ.ab.τ

′ and σ.ab.τ ′ ∼a σ
′.ab.τ ′ and transitivity of ∼a we

then get σ.ab.τ ∼a σ
′.ab.τ ′.

Similarly, from σ′.ab ∼b σ
′.ab and τ ′ ∼b τ

′′ we get σ′.ab.τ ′ ∼b σ
′.ab.τ ′′, from

σ′.ab ∼b σ
′′.ab and τ ′′ ∼b τ

′′ we get σ′.ab.τ ′′ ∼b σ
′′.ab.τ ′′ (although c is not an

expert in σ′′, a and b are, so as above no new secrets are learnt in calls in τ ′′),
and therefore from both we obtain σ′.ab.τ ′ ∼b σ

′′.ab.τ ′′.
From σ′′ 6|= Expc and σ′′.ab.τ ′′ = σ′′.abn+1 we obtain σ′′.ab.τ ′′ 6|= Expc.

Finally, in view of the above σ′.ab.τ ′ 6|= KbExpc, and also σ.ab.τ 6|= KaKbExpc.
This implies ρ 6|= EEExpA and because ρ was an arbitrary call sequence, we

have shown EEExpA must be unsatisfiable. ut

7 Conclusion and Open Questions

We have shown that “everyone knows that everyone knows all secrets” is the
maximum level of shared knowledge that can be reached in asynchronous gossip.
Formally, we can reach EExpA but the next level EEExpA is unsatisfiable.

Our results suggest at least two immediate related questions. First, it remains
open whether KiEExpA is satisfiable. That is, can at least one agent learn that
everyone is a super-expert? Second, a footnote to [3]: maybe one does not need
to consider arbitrary epistemic formulas, but could show that beyond a certain
modal depth any formula of a certain kind (with positively stacked modalities,
i.e. excluding negations before epistemic modalities) is unsatisfiable. That would
simplify model checking gossip.

Finally, in ongoing work we study minimal call sequences reaching super
success. We conjecture that at least 2n− 3 calls are needed to reach KiExpA for
some agent i, and that at least n− 2 +

(
n
2

)
calls are needed to reach EExpA.
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