
GoMoChe: Gossip Model Checking
(Extended Abstract for LAMAS & SR 2022, Rennes)

Malvin Gattinger
University of Amsterdam

malvin@w4eg.eu

ABSTRACT
The gossip problem provides a simple model of information ex-
change in distributed systems. For the analysis and verification of
gossip protocols, logics have been developed, but manual computa-
tion and case analysis can be tedious and error-prone.

Here we present GoMoChe, a special-purpose model checker for
gossip. The tool can decide when protocols known from the litera-
ture such as “Learn New Secrets” are successful. GoMoChe uses a
version of epistemic logic with protocol-dependent knowledge and
was developed to find and verify results in previous work.

The main version models a synchronous setting where agents
always know how many calls happened, but we also provide an
experimental version for asynchronous settings where agents only
observe their own calls.

KEYWORDS
Gossip Protocols, Model Checking, Epistemic Logic

1 INTRODUCTION
The gossip problem, also known as the telephone problem, in its
simplest form can be stated as follows:

Suppose 𝑛 agents initially each know a unique se-
cret. The agents make phone calls in which they
tell each other all secrets they know. How many
calls are needed until everyone knows all secrets?

The classic result is that 2𝑛 − 4 calls are necessary and sufficient,
as for example shown in [6]. Many similar results, for example for
non-total “phone book” graphs, can be found in [3].

Besides its combinatoric and graph theoretic appeal, the gossip
problem also serves as a toy example of a distributed system and a
model of information synchronisation between multiple agents, be
they actual gossipers or nodes of a distributed database.

The classic 2𝑛−4 result assumes a central scheduler who decides
which calls should be made in which order. In contrast, recent
research is about a decentralized setting where gossipers decide
on their own whom to call. This motivates the study of epistemic
protocols, i.e. calling conditions which agents (can) use to make
this decision. Common examples from the literature are Learn New
Secrets, LNS (“Agent a may call b iff a does not know the secret
of b”) or Possible Information Growth, PIG (“Agent a may call b
iff a considers it possible that a or b will learn a new secret in
that call”). For a precise analysis of these protocols, logics have
been developed [1, 8, 10, 12]. Some also consider dynamic gossip
from [11], where agents exchange phone numbers in addition to
secrets, making the graph grow while calls are made.

Epistemic logic is a powerful tool to analyse distributed (dy-
namic) gossip protocols. In particular it allows us to study the

(higher-order) knowledge obtained by gossiping agents, and an-
swer questions such as the following.

(1) After the call sequence 𝑎𝑏;𝑏𝑐;𝑎𝑐 , does agent 𝑎 know that
agent 𝑏 knows the secret of agent 𝑐?

(2) Is the call sequence 𝑎𝑏; 𝑐𝑑 ;𝑎𝑐 ;𝑏𝑑 successful, i.e. do all agents
know all secrets afterwards? Moreover, is it super success-
ful, i.e. do all agents know that all agents know all secrets?

(3) Given the gossip graph in the left part of Figure 1, how
many LNS sequences are (un)successful?

(4) After the sequence 𝑎𝑏;𝑏𝑐; 𝑐𝑑 ;𝑏𝑑 , does agent 𝑎 know that if
they call agent 𝑏 then 𝑏 will tell 𝑎 the secret 𝑑?

All these questions can be made precise and then be answered using
epistemic logic. However, doing the necessary case analysis and
computation manually with pen and paper can be quite tedious.

Here we present GoMoChe, a special-purpose model checker for
the analysis of gossip protocols. The tool was developed for and
has been used to find and verify part of the results in [5, 7, 8].

GoMoChe is available at https://github.com/m4lvin/GoMoChe
and is free software under the GNU General Public License 3. 1

2 DYNAMIC GOSSIP: BASIC DEFINITIONS
We only provide basic definitions here and refer to [8] for more
details and precision.

Definition 2.1. A gossip graph is a tuple 𝐺 = (𝐴, 𝑁, 𝑆) where 𝐴
is a finite set of agents, 𝑁 ⊆ 𝐴 × 𝐴 is called the number relation,
𝑆 ⊆ 𝐴×𝐴 is called the secret relation. A gossip graph is initial when
𝑆 is the identity.

Definition 2.2. A call is a pair of agents (𝑥,𝑦) ∈ 𝐴 ×𝐴 which we
also denote by 𝑥𝑦. We denote finite sequences of calls by 𝜎 and the
empty sequence by 𝜖 . The result of executing a call on 𝐺 where
(𝑥,𝑦) ∈ 𝑁 is 𝐺𝑥𝑦 := (𝐴, 𝑁𝑥𝑦, 𝑆𝑥𝑦) where 𝑁𝑥𝑦 := 𝑁 ∪ {(𝑥, 𝑧) |
(𝑦, 𝑧) ∈ 𝑁 } ∪ {(𝑦, 𝑧) | (𝑥, 𝑧) ∈ 𝑁 } and 𝑆𝑥𝑦 is defined analogously.
We denote finite sequences of calls by 𝜎 and the empty sequence
by 𝜖 . Executing a sequence 𝜎 on 𝐺 is defined inductively to obtain
𝐺𝜎 = (𝐴, 𝑁𝜎 , 𝑆𝜎).

Example 2.3. We show two gossip graphs in Figure 1.

a

b

c

d 𝑎𝑏⇒

a

b

c

d

Figure 1: An initial gossip graph, a call and the resulting
graph. Dashed lines show 𝑁 , solid lines show 𝑁 ∩ 𝑆 .

1This PDF file was last updated on 2022-07-22. The latest version is available at
https://malv.in/2022/LAMASSR-GoMoChe.pdf.

1

https://lamassr.github.io/
https://github.com/m4lvin/GoMoChe
https://malv.in/2022/LAMASSR-GoMoChe.pdf

3 PROTOCOL-DEPENDENT KNOWLEDGE
A key part of GoMoChe is a recursive model checking algorithm
for the following language and semantics. The definitions below
are mutually inductive and the reader might worry whether this is
well-founded. We refer to [8] for explanations and proofs, and only
note here that we do not allow self-referential protocols. That is, a
protocol 𝑃 may not use the operator 𝐾𝑃

𝑖
.

Definition 3.1. Let 𝑖 range over 𝐴 and let 𝑃 be a protocol from
Definition 3.2. The language of protocol-dependent knowledge is:

𝜑 ::= ⊤ | 𝑁𝑖𝑖 | 𝑆𝑖𝑖 | 𝐶𝑖𝑖 | 𝑖 = 𝑖 | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝐾𝑃
𝑖 𝜑 | [𝜋]𝜑

𝜋 ::= ?𝜑 | 𝑖𝑖 | 𝜋 ;𝜋 | 𝜋 ∪ 𝜋 | 𝜋∗

Besides this, ⊥, ∨ and → are defined as usual and we define
⟨𝜋⟩𝜑 := ¬[𝜋]¬𝜑 . We also define 𝐾̂𝑃

𝑖
𝜑 := ¬𝐾𝑃

𝑖
𝜑 for “Agent 𝑖 , given

𝑃 , considers it possible that 𝜑”. In the implementation all connec-
tives are primitives, to reduce the number of recursive calls. More-
over, GoMoChe provides quantifiers to say “For all agents 𝑥” etc.

Definition 3.2. A protocol is a function 𝑃 assigning to each pair
of agents a formula called the protocol condition 𝑃𝑎𝑏 .

Example 3.3. The Learn New Secrets (LNS) protocol is given by
𝐿𝑁𝑆𝑎𝑏 := ¬𝑆𝑎𝑏. The soft look-ahead strengthening of LNS is given
by 𝐿𝑁𝑆♦ := 𝐿𝑁𝑆𝑎𝑏 ∧ 𝐾̂𝐿𝑁𝑆

𝑎 [𝑎𝑏]⟨𝑃⟩∧𝑥,𝑦 𝑆𝑥𝑦. (See [8] for more.)

Definition 3.4. A state is a tuple (𝐺, 𝜎) where𝐺 is an initial gossip
graph and 𝜎 is a sequence executable on𝐺 . The semantics on gossip
states are given by standard Boolean semantics and

𝐺, 𝜎 ⊨ 𝑁𝑥𝑦 :⇔ (𝑥,𝑦) ∈ 𝑁𝜎

𝐺, 𝜎 ⊨ 𝑆𝑥𝑦 :⇔ (𝑥,𝑦) ∈ 𝑆𝜎
𝐺, 𝜎 ⊨ 𝐶𝑥𝑦 :⇔ 𝑥𝑦 ∈ 𝜎 or 𝑦𝑥 ∈ 𝜎
𝐺, 𝜎 ⊨ 𝑥 = 𝑦 :⇔ 𝑥 = 𝑦

𝐺, 𝜎 ⊨ 𝐾𝑃
𝑎 𝜑 iff 𝐺, 𝜎 ′ ⊨ 𝜑 for all (𝐺, 𝜎 ′) ∼𝑃𝑎 (𝐺, 𝜎)

𝐺, 𝜎 ⊨ [𝜋]𝜑 iff 𝐺, 𝜎 ′ ⊨ 𝜑 for all (𝐺, 𝜎 ′) ∈ ⟦𝜋⟧(𝐺, 𝜎)
with ⟦𝜋⟧(𝐺, 𝜎) = {(𝐺, 𝜎 ′) | ((𝐺, 𝜎), (𝐺, 𝜎 ′)) ∈ ⟦𝜋⟧} defined by

⟦?𝜑⟧(𝐺, 𝜎) := {(𝐺, 𝜎) | 𝐺, 𝜎 |= 𝜑}
⟦𝑎𝑏⟧(𝐺, 𝜎) := {(𝐺, (𝜎 ;𝑎𝑏)) | 𝐺, 𝜎 |= 𝑁𝑎𝑏}

⟦𝜋 ;𝜋 ′⟧(𝐺, 𝜎) :=
⋃{⟦𝜋 ′⟧(𝐺, 𝜎 ′) | (𝐺, 𝜎 ′) ∈ ⟦𝜋⟧(𝐺, 𝜎)}

⟦𝜋 ∪ 𝜋 ′⟧(𝐺, 𝜎) := ⟦𝜋⟧(𝐺, 𝜎) ∪ ⟦𝜋 ′⟧(𝐺, 𝜎)
⟦𝜋∗⟧(𝐺, 𝜎) :=

⋃{⟦𝜋𝑛⟧(𝐺, 𝜎) | 𝑛 ∈ N}.
If𝐺, 𝜎 |= 𝑃𝑎𝑏 we say that 𝑎𝑏 is 𝑃-permitted at (𝐺, 𝜎). A 𝑃-permitted
call sequence consists of 𝑃-permitted calls.

Definition 3.5. We define ∼𝑃𝑎 for agent 𝑎 and protocol 𝑃 between
states (𝐺, 𝜎) by induction on 𝜎 where 𝜖 is the empty sequence.

• (𝐺, 𝜖) ∼𝑃𝑎 (𝐺, 𝜖);
• if (𝐺, 𝜎) ∼𝑃𝑎 (𝐺, 𝜏), 𝑁𝜎

𝑏
= 𝑁𝜏

𝑏
, 𝑆𝜎

𝑏
= 𝑆𝜏

𝑏
, and 𝐺, 𝜎 |= 𝑃𝑎𝑏 and

𝐺, 𝜏 |= 𝑃𝑎𝑏 , then (𝐺, 𝜎 ;𝑎𝑏) ∼𝑃𝑎 (𝐺, 𝜏 ;𝑎𝑏);
if (𝐺, 𝜎) ∼𝑃𝑎 (𝐺, 𝜏), 𝑁𝜎

𝑏
= 𝑁𝜏

𝑏
, 𝑆𝜎

𝑏
= 𝑆𝜏

𝑏
, and 𝐺, 𝜎 |= 𝑃𝑏𝑎 and

at 𝐺, 𝜏 |= 𝑃𝑎𝑏 , then (𝐺, 𝜎 ;𝑏𝑎) ∼𝑃𝑎 (𝐺, 𝜏 ;𝑏𝑎);
• if (𝐺, 𝜎) ∼𝑃𝑎 (𝐺, 𝜏) and 𝑎 ∉ {𝑐, 𝑑, 𝑒, 𝑓 } such that 𝐺, 𝜎 |= 𝑃𝑐𝑑

and 𝐺, 𝜏 |= 𝑃𝑒 𝑓 , then (𝐺, 𝜎 ; 𝑐𝑑) ∼𝑃𝑎 (𝐺, 𝜏 ; 𝑒 𝑓).

In GoMoChe Defintion 3.5 is given by the function epistAlt
of type Agent -> Protocol -> State -> [State] in the
Gossip.General module.

4 USAGE AND FEATURES
GoMoChe is implemented in Haskell and used via ghci, the inter-
active Haskell compiler. To answer the questions from the intro-
duction we can use GoMoChe as follows.
-- (1)
> eval (totalInit 3, parseSequence "ab;bc;ac") (K 0 anyCall (S 1 2))
True
-- (2)
> isSuccSequence (totalInit 4,[]) (parseSequence "ab;cd;ac;bd")
True
> isSuperSuccSequence lns (totalInit 4,[]) (parseSequence "ab;cd;ac;bd")
False
-- (3)
> statistics lns (parseGraph "01-12-231-3 I4",[])
(57,20)
-- (4)
> eval (totalInit 4, parseSequence "ab;bc;cd;bd")

(K 0 anyCall (Box (Call 0 1) (S 0 3)))
False
> eval (totalInit 4, parseSequence "ab;bc;cd;bd")

(K 0 lns (Box (Call 0 1) (S 0 3)))
True

The last two queries show that the answer depends on which pro-
tocol agent 𝑎 (also denoted by 0) assumes: Agent 𝑎 knows it if they
assume lns is used, but do not know it when anyCall is allowed.

Other notable functions in GoMoChe include dispDot to visu-
alise gossip graphs and execution trees, and knowledgeOverview
to generate overview tables as shown in [9].

5 CONCLUDING REMARKS
Related Work. Parts of GoMoChe are inspired by the epistemic

model checkers DEMO and SMCDEL [2, 13]. A similar tool devel-
oped recently by Ramon Meffert is ElmGossip from [4]. In contrast
to GoMoChe, the ElmGossip tool offers a graphical user interface
and is meant as an easy to use tool for students and researchers.
While GoMoChe is meant to be used in ghci or as a Haskell library,
ElmGossip does not require the user to be familiar with Haskell or
any other programming language. On the other hand, ElmGossip
does not keep track of higher-order knowledge and is not a model
checker.

Asynchronous semantics. The main version of GoMoChe imple-
ments synchronous semantics as in Definition 3.5. In an experi-
mental version (in the async branch) we implemented asynchro-
nous semantics where for example 𝑎𝑏;𝑏𝑐 ; 𝑐𝑑 ;𝑎𝑏 ∼𝑎 𝑎𝑏;𝑑𝑐 ;𝑎𝑏. How-
ever, agents then often consider infinitely many sequences possible,
hence we currently enforce a maximum length of call sequences.
This ad-hoc solution is not sound, but suffices to find and prove
negative results, i.e. to show that agents do not know something. In
the future we hope to use reduction techniques from [10] to obtain
finitary representations.

Future work. We plan to further improve the usability and docu-
mentation of GoMoChe. Other variants of gossip to consider include
broadcast calls and unreliable agents.

Acknowledgments. I thankmy coauthors in [5, 7, 8] for useful sug-
gestions and catching bugs during the development of GoMoChe.

2

REFERENCES
[1] K.R. Apt and D. Wojtczak. 2018. Verification of Distributed Epistemic Gossip

Protocols. J. Artif. Intell. Res. 62 (2018), 101–132. https://doi.org/10.1613/jair.1.
11204

[2] Malvin Gattinger. 2022. SMCDEL — An Implementation of Symbolic Model
Checking for Dynamic Epistemic Logic with Binary Decision Diagrams. https:
//github.com/jrclogic/SMCDEL

[3] Sandra M Hedetniemi, Stephen T Hedetniemi, and Arthur L Liestman. 1988. A
survey of gossiping and broadcasting in communication networks. Networks 18,
4 (1988), 319–349. https://doi.org/10.1002/net.3230180406

[4] Ramon Meffert. 2021. Tools for Gossip. https://fse.studenttheses.ub.rug.nl/
23961/ BSc thesis, University of Groningen. Code available at https://github.
com/RamonMeffert/elm-gossip.

[5] Rahim Ramezanian, Rasoul Ramezanian, Hans van Ditmarsch, and Malvin
Gattinger. 2021. Everyone Knows that Everyone Knows. In Mathematics,
Logic, and Their Philosophies: Essays in Honour of Mohammad Ardeshir, Mo-
jtaba Mojtahedi, Shahid Rahman, and Mohammad Saleh Zarepour (Eds.). https:
//doi.org/10.1007/978-3-030-53654-1_5

[6] Robert Tijdeman. 1971. On a telephone problem. Nieuw Archief voor Wiskunde
3, 19 (1971), 188–192.

[7] Hans van Ditmarsch, Malvin Gattinger, Ioannis Kokkinis, and Louwe B. Kuijer.
2019. Reachability of Five Gossip Protocols. In Proceedings of RP 2019, Emmanuel

Filiot, Raphaël Jungers, and Igor Potapov (Eds.). https://doi.org/10.1007/978-3-
030-30806-3_17

[8] Hans van Ditmarsch, Malvin Gattinger, Louwe B. Kuijer, and Pere Pardo. 2019.
Strengthening Gossip Protocols using Protocol-Dependent Knowledge. Journal
of Applied Logics - IfCoLog Journal of Logics and their Applications 6, 1 (2019),
157–203. https://doi.org/10.48550/arXiv.1907.12321

[9] Hans van Ditmarsch, Malvin Gattinger, and Rahim Ramezanian. 2020. Every-
one Knows that Everyone Knows: Gossip Protocols for Super Experts. CoRR
abs/2011.13203 (2020). arXiv:2011.13203 https://arxiv.org/abs/2011.13203

[10] H. van Ditmarsch, W. van der Hoek, and L.B. Kuijer. 2020. The logic of gossiping.
Artificial Intelligence 286 (2020), 103306. https://doi.org/10.1016/j.artint.2020.
103306

[11] Hans van Ditmarsch, Jan van Eijck, Pere Pardo, Rahim Ramezanian, and François
Schwarzentruber. 2017. Epistemic protocols for dynamic gossip. Journal of
Applied Logic 20 (2017), 1–31. https://doi.org/10.1016/j.jal.2016.12.001

[12] Hans van Ditmarsch, Jan van Eijck, Pere Pardo, Rahim Ramezanian, and François
Schwarzentruber. 2019. Dynamic Gossip. Bulletin of the Iranian Mathematical
Society 45, 3 (2019), 701–728. https://doi.org/10.1007/s41980-018-0160-4

[13] Jan van Eijck. 2007. DEMO—a demo of epistemic modelling. In Interactive Logic.
Selected Papers from the 7th Augustus de Morgan Workshop, London, Vol. 1. 303–
362. https://homepages.cwi.nl/~jve/papers/07/pdfs/DEMO_IL.pdf

3

https://doi.org/10.1613/jair.1.11204
https://doi.org/10.1613/jair.1.11204
https://github.com/jrclogic/SMCDEL
https://github.com/jrclogic/SMCDEL
https://doi.org/10.1002/net.3230180406
https://fse.studenttheses.ub.rug.nl/23961/
https://fse.studenttheses.ub.rug.nl/23961/
https://github.com/RamonMeffert/elm-gossip
https://github.com/RamonMeffert/elm-gossip
https://doi.org/10.1007/978-3-030-53654-1_5
https://doi.org/10.1007/978-3-030-53654-1_5
https://doi.org/10.1007/978-3-030-30806-3_17
https://doi.org/10.1007/978-3-030-30806-3_17
https://doi.org/10.48550/arXiv.1907.12321
https://arxiv.org/abs/2011.13203
https://arxiv.org/abs/2011.13203
https://doi.org/10.1016/j.artint.2020.103306
https://doi.org/10.1016/j.artint.2020.103306
https://doi.org/10.1016/j.jal.2016.12.001
https://doi.org/10.1007/s41980-018-0160-4
https://homepages.cwi.nl/~jve/papers/07/pdfs/DEMO_IL.pdf

	Abstract
	1 Introduction
	2 Dynamic Gossip: Basic Definitions
	3 Protocol-Dependent Knowledge
	4 Usage and Features
	5 Concluding Remarks
	References

