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Preface to the Translation
The question whether Propositional Dynamic Logic has Craig Interpolation
has gotten much attention. There have been at least three proof attempts:

• Daniel Leviant in 1981 (https://doi.org/10.1007/3-540-10699-5_111)

• Manfred Borzechowski in 1988
(http://www.borzechowski.de/TableauKalkülFürPDLUndInterpolation.pdf)

• Tomasz Kowalski in 2002 (https://doi.org/10.2178/jsl/1190150141)

The proof by Kowalski was officially retracted (in 2004), but the status of the
other two proofs is unclear. One might even say that it is an open question
whether it is an open question whether PDL has CI.

In his book Tools and Techniques in Modal Logic, Marcus Kracht devotes a
chapter to “The Unanswered Question” and mentions both proofs by Leivant
and Borzechowski. Kracht points out a problem in the proof by Leivant which
I discussed in https://w4eg.de/malvin/illc/pdl.pdf. I believe that the finitary
rule criticised by Kracht is not a problem, but there are other steps in the
proof which could not be clarified so far, including the “¬¬ trick”.

Interestingly, Kracht does not write anything further about Borzechowskis
proof. Borzechowski wrote his diploma thesis in German and never published
it. My impression is that very few people actually read it. By translating it
from German to English (and from scanned Atari 800XL to LATEX) I hope to
change this. Maybe the answer has been waiting for us since 1988.

A few notes on the translation follow. I try to stay as close to the original as
possible without violating English grammar. Some concepts I translate more
freely. For example, “Endlichkeitssatz für die Folgerungsrelation” is simply
the compactness theorem. Selected vocabulary can be found at the end of
the document. For example, I decided to translate “belastet” as ‘loaded’.

The margins show the original page numbers and additions are grey. When
finding any errors the reader should of course first assume that I introduced
them and check the original. Please send corrections to malvin@w4eg.eu.1

Malvin Gattinger
February 2020

Groningen

1I thank Gerard Renardel and Jan Rooduijn for pointing out typos.
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↓ page 3
0 Introduction
During the last twenty years (i.e. 1968–1988) many logics and calculi have
been developed and studied in which properties of programs can be formalised
and formally proven. These logics are not just interesting from a theoretical
point of view: they are also a necessary tool to solve problems in program
verification and automated program synthesis.

One of these logics is dynamic logic (DL) from 1976 (PRATT [7]). It is a
generalisation of first order modal logic. Its propositional fragment, the propo-
sitional dynamic logic (PDL) was introduced in 1977 (FISCHER/LADNER [4])
and proven to be decidable. Since then not only Theoretical Computer Sci-
ence, but also Mathematics has studied DL, PDL and their extensions. For
example there is a big interest in which properties of basic modal logic are
shared by these logics and to what degree they can be proven by established
modal logic methods. An exhaustive review of works on this topic can be
found in the bibliography of HAREL [5] and in MÜLLER,RAUTENBERG [6].

In the first part of this thesis a tableau-calculus for PDL is developed which
builds upon the decision procedure suggested by PRATT [8]. In the second
part this calculus is used to show, for the first time, that PDL has the
interpolation property.

↓ page 4
1 Tableau for PDL

1.1 The Syntax of PDL
In the language of propositional dynamic logic there are two kinds of expres-
sions: formulas and programs. Let F0 and P0 be two countable sets, whose
elements we call propositional variables and atomic programs, respectively.
With p, q, r, . . . we denote the propositional variables and with A, B, C, . . . we
denote the atomic programs. From those sets and the symbols 0, ¬, ∧, ;, ∪,
∗, ?, [, ], ( and ) we inductively define formulas and programs.

Definition 1. Every propositional variable and 0 is a formula, and every
atomic program is a program. In addition, whenever P and Q are arbitrary
formulas and a and b are arbitrary programs, then the strings

• ¬P , (P ∧ Q) and [a]P are also formulas,

• (a; b), (a ∪ b), a∗ and P? are also programs.
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Therefore for example ([(A; B∗)]p ∧ q) is a formula. In general we omit
the outermost pair of parentheses of formulas and programs; this formula
would thus be written shorter as [A; B∗]p ∧ q. With P, Q, R, . . . we denote
arbitrary formulas and with a, b, c, . . . arbitrary programs. Further we write
P1 ∧ . . . ∧ Pn for (P1 ∧ . . . (Pn−1 ∧ Pn) . . .) and analogously a1; . . . ; an for
(a1; . . . (an−1; an) . . .). If all ai are the same a, then we write an for this.
Moreover, let a1 := a and a0 := ¬0?. We also use the common abbreviations
1, P ∨ Q, P → Q and P ↔ Q for ¬0, ¬(¬P ∧ ¬Q), ¬(P ∧ ¬Q) and
(P → Q) ∧ (Q → P ).

↓ page 5 With F we denote the set of all formulas and with P the set of all programs.
With X, Y, Z, . . . we always denote finite sets of formulas. We write X; Y for
X ∪ Y and X; P for X ∪ {P}.

We call a string of the form [a] a program operator. As we will see later,
in the semantics each program operator [A] with A ∈ P0 will play a role
similar to the modal operator in the modal logic K. Often in the literature
the formulas of PDL are built using program operators of the form ⟨a⟩. These
are dual to the [a] operators; one can either define [a]P := ¬⟨a⟩¬P or instead
⟨a⟩P := ¬[a]¬P .

Programs of the form P? are called tests. Because of tests both formulas
and programs can be built using formulas and programs. For example, the
formula [[B]p?; A∗]q contains the program [B]p? which in turn contains the
formula [B]P . This nested construction of formulas and programs means that
we often have to use the following proof method.

Simultaneous induction over formula and program construction
Suppose the property E holds for all p ∈ F0 and for 0 and suppose the
property E ′ holds for all A ∈ P0. Moreover, suppose the following condition
holds:

If E holds for P and Q and E ′ holds for a and b, then E also holds
for ¬P , (P ∧ Q), and [a]P , and E ′ also holds for (a; b), (a ∪ b), a∗

and P?.

Then E holds for all P ∈ F and E ′ holds for all a ∈ P .

↓ page 6
1.2 The Semantics of PDL
We now present the semantics of PDL. It is a generalisation of the relational
semantics of modal logic. We note that there is also an algebraic semantics
for PDL. The reader interested in dynamic algebras is referred to works by
PRATT, KOZEN and REITERMAN/TRNKOVA cited in [6].
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Definition 2. A Kripke model is a structure of the form (g, π, ν). Here g is
a non-empty set whose elements we call states and denote with S, T, U, . . ..
Furthermore π is a function, which maps each atomic program A to a reach-
ability relation π(A) ⊆ g × g. Finally, ν is a function which maps each
propositional variable p to a set ν(p) ⊆ g, its extension.

Let us now fix µ = (g, π, ν) to be a Kripke model. We show how formulas
and programs can be interpreted over µ.

Definition 3. We define in parallel the acceptance relation ⊩µ⊆ g × (F \{0})
and the inductive continuation of π to P. Here we write S ⊩ P for (S, P ) ∈⊩µ.

S ⊩ p : ⇐⇒ S ∈ ν(p)
S ⊩ P ∧ Q : ⇐⇒ S ⊩ P and S ⊩ Q
S ⊩ ¬P : ⇐⇒ not S ⊩ P
S ⊩ [a]P : ⇐⇒ T ⊩ P for all T with (S, T ) ∈ π(a)

π(a ∪ b) := π(a) ∪ π(b)
π(a; b) := π(a) ◦ π(b)
π(a∗) := ⋃{π(ai) | i ∈ ω}
π(P?) := {(S, S) | S ⊩ P}

We note that S ⊮ 0 and (S, S) ∈ π(a∗) hold for all S ∈ g and a ∈ P. For
(S, T ) ∈ π(a) we often also write S

a→ T .

↓ page 7 The reachability relation of non-atomic programs therefore has the following
properties:

S
a;b→ T ⇐⇒ S

a→ U and U
b→ T for some U ∈ g

S
a∪b→ T ⇐⇒ S

a→ T or S
b→ T

S
a∗
→ T ⇐⇒ S

an

→ T for some n ∈ ω

S
P ?→ T ⇐⇒ S = T and S ⊩ P

A Kripke model can be understood as a model of a computer. One should
imagine g as the set of all states in which the computer can be, defined
for example as the set of all possible contents of all memory. Each p ∈ F0
represents a certain property which holds exactly for the states in ν(p).
Moreover, each atomic program A ∈ P0 corresponds to a certain command
which can be executed by the CPU. We then have (S, T ) ∈ π(A) exactly
if T is a possible outcome of executing A starting in state S. And we have
S ⊩ [A]p if and only if T ⊩ p holds for all possible resulting states of this
execution.
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In this way of interpreting Kripke models certain programs can be interpreted
as common control structures of imperative programming languages such as
PASCAL or ALGOL. This is the case for example for the programs

(P?; a) ∪ (¬P?; b) ≡ if P then a else b,
a; (¬P?; a)∗; P? ≡ repeat a until P,
(P?; a)∗; ¬P? ≡ while P do a.

Let us convince ourselves in one of these cases. We have

S
a;(¬P ?;a)∗;P ?→ T

⇐⇒ S
a;(¬P ?;a)n

→ T for some n and T ⊩ P
⇐⇒ there are Si for i ≤ n with

S
a→S0

a→ . . .
a→ Sn = T and Si ⊩ ¬P ⇐⇒ i < n

and this is the case exactly when T is a possible outcome of executing “repeat
a until P” starting in state S. This includes a correction: there must be at
least one a→ step. In the original text the prefix a; is missing.

↓ page 8 Definition 4. We say that a formula P is satisfiable if there is a Kripke
model (g, π, ν) (corrected from (g, ν, π)) and an S ∈ g such that S ⊩ P (which
we read as “S accepts P” or “P holds in S”). Furthermore, P is called valid
if ¬P is not satisfiable.

Example 1. The following formulas are valid for all P, Q, a, b:

[a](P → Q) → ([a]P → [a]Q) [a ∪ b]P ↔ [a]P ∧ [b]P
[a∗]P ↔ (P ∧ [a][a∗]P ) P ∧ [a∗](P → [a]P ) → [a∗]P

The bottom right formula is the well-known induction axiom.

Remark 1. We quickly mention some connections between PDL and modal
logic. Let F(a) denote the set of all formulas in F which only use the program
operator [a] and let F1(a) denote the set of all valid formulas in F(a). Each
set F1(a) is essentially a normal modal logic (RAUTENBERG [11]); one
merely has to identify the modal operator with the program operator [a]. Some
well-known modal logics can be obtained by choosing a suitable a. For example
we have:

K = F1(A) S4 = F1(A∗) M = F1(A ∪ 1?)

This is because the possible reachability relations π(A ∪ 1?) and π(A∗) of all
Kripke models over a set g are exactly all reflexive and transitive relations
over g, respectively.
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The logic CPDL is an extension of PDL obtained by adding the functor (·)−

(HAREL [5]), interpreted by S
a−
→ T ⇐⇒ T

a→ S. With this we have:

B = F1(A ∪ 1? ∪ A−) S5 = F1((A ∪ A−)∗)

The possible reachability relations π(A ∪ 1 ∪ A−) and π((A ∪ A−)∗) of all
Kripke models over a set g are exactly all the symmetric-and-reflexive relations
and equivalence relations over g, respectively.

↓ page 9 Definition 5. Let X be a set of formulas and P be a formula. If for every
Kripke model (g, ν, π) and every state S ∈ g S ⊩ X implies S ⊩ P , then we
write X ⊨ P (which we read “from S follows P”).

We note that in PDL there is no compactness theorem. For example, let
X = {[Ai]p | i ∈ ω} and P = [A∗]p. Then we have X ⊨ P . However,
for all proper subsets of Y ⊊ X we have Y ⊭ P . To see this, take any
[An]p /∈ Y . In every Kripke model µ = (g, ν, π) with g = ω, ν(p) = ω \ {n}
and π(A) = {(i, i+1) | i ∈ ω} we have 0 ⊩µ Y and 0 ⊩µ ¬[An]p. In particular
there is not finite set X0 ⊆ X such that X0 ⊨ P .

↓ page 10
1.3 Decision Procedure for PDL
One of the earliest discoveries about PDL is the small model property shown
in FISCHER, LADNER [4].

Theorem 1. If P is satisfiable, then P is already satisfiable in a Kripke
model (g, ν, π) such that |g| ≤ 2l(P ).

Here l(P ) denotes the length of the string P . The proof of the theorem uses
the filtration technique well-known from modal logic. We sketch the proof
idea here.

Proof. Let P be satisfiable and l(P ) = n. Let c(P ) denote the Fischer-Ladner
closure, i.e. the smallest set that contains P , that is closed under taking
subformulas and fulfilling the following conditions:

[a; b]R ∈ c(P ) ⇒ [a][b]R ∈ c(P )
[a ∪ b]R ∈ c(P ) ⇒ [a]R, [b]R ∈ c(P )
[a∗]R ∈ c(P ) ⇒ [a][a∗]R ∈ c(P )
[Q?]R ∈ c(P ) ⇒ Q ∈ c(P )

One shows by induction that we always have |c(P )| ≤ l(P ). Let now µ =
(g, ν, π) be a Kripke model such that there is a SP ∈ g with SP ⊩ P . For
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S, T ∈ g let

S ≡P T : ⇐⇒ ( S ⊩ R ⇐⇒ T ⊨ R for all R ∈ c(P ) )
|S|P := {T | T ≡P S}.

We now define a Kripke model (gP , νP , πP ) with gP := {|S|P | S ∈ g}.
Because of |c(P )| ≤ n we have |gP | ≤ 2n. With the definitions

|S|P ∈ νP (p) : ⇐⇒ there exists S ′ ∈ |S|P such that S ′ ∈ ν(p)
(|S|P , |T |P ) ∈ πP (A) : ⇐⇒ there exist S ′ ∈ |S|P and T ′ ∈ |T |P

such that (S ′, T ′) ∈ π(A)

the model µ′ = (gP , νP , πP ) has the following property:

For all R ∈ c(P ) and S ∈ g, we have S ⊩µ R ⇐⇒ |S|P ⊩µ′
R

Hence in particular we have |SP |P ⊩µ′
P .

From this theorem we can directly derive a decision procedure to check the
satisfiability of a formula P :

↓ page 11 For all Kripke models (g, ν, π) with (for example) g = {1, . . . , K},
check whether they have a state S ∈ G such that S ⊩ P .

However, this procedure is completely infeasible. To be sure, the time needed
to check whether there exists an S ∈ g with S ⊩ P is only a polynomial in
|g| + l(P ) (FISCHER, LADNER [4]). But the number of Kripke models to
check is in the order 24l(P ) (PRATT [8]), which excludes any practical use
of the procedure for other than trivial cases. This motivates the search for
better decision procedures, some of which we will present in the following.

Already PRATT [8] uses a satisfiability decision procedure of the same kind
as we will do here; namely a Tableau-Calculus. The satisfiability of P is first
reduced to the existence of certain structures; In PRATT, those are filtered
tableau structures, whereas we will use a direct generalisation of model graphs
from RAUTENBERG [12]. In both cases one shows that such a structure
exists if and only if it is not possible to construct certain tableaus. The
tableaus we define are also a direct generalisation of the modal logic tableaus
defined in RAUTENBERG [12]. As there, also here they allow us to show an
interpolation theorem.

Per the theorem above any satisfiable formula P already holds at a state in
a Kripke model (g, ν, π) in which every state can be identified with the set
{R ∈ c(P ) | S ⊩ R}. The methods used in PRATT [9] and HAREL [5] try to
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build such a model directly from the subsets of c(P ). In step 0 one constructs
the set g0 of those Z ⊆ c(P ) fulfilling the following conditions:

↓ page 12
¬R ∈ c(P ) ⇒ (¬R ∈ Z ⇐⇒ R ̸∈ Z)

Q ∧ R ∈ c(P ) ⇒ (Q ∧ R ∈ Z ⇐⇒ Q, R ∈ Z)
[a; b]R ∈ c(P ) ⇒ ([a; b]R ∈ Z ⇐⇒ [a][b]R ∈ Z)

[a ∪ b]R ∈ c(P ) ⇒ ([a ∪ b]R ∈ Z ⇐⇒ [a]R, [b]R ∈ Z)
[a∗]R ∈ c(P ) ⇒ ([a][a∗]R ∈ Z)

[Q?]R ∈ c(P ) ⇒ ([Q?]R ∈ Z ⇐⇒ (Q ∈ Z ⇒ R ∈ Z))

For each atomic program A occurring in P we define π0(A) by

(Z, Z ′) ∈ π0(A) : ⇐⇒ ([A]R ∈ Z ⇒ R ∈ Z ′)

If after the i-th step there is a Z ∈ g and a [a]R ∈ c(P ) such that [a]R /∈ Z,
but also

for all Z ′ such that (Z, Z ′) ∈ πi(a) we have R ∈ Z ′,

then we define gi+1 = gi \{Z} and πi+1 := πi ∩(gi+1 ×gi+1). After a maximum
of |g0| steps we obtain a gk for which there is no more such Z. If gk is not
empty, then we use Z ∈ νk(p) : ⇐⇒ p ∈ Z to define the Kripke model
µ = (gk, νk, πk) and obtain

R ∈ c(P ) ⇒ (Z ⊩µ R ⇐⇒ R ∈ Z).

Hence if a Z ∈ gk contains the formula P , then P is satisfiable. In particular
one can show that P is satisfiable if and only if there exists a Z ∈ gk with
P ∈ Z. Hence the construction of gk above provides a decision procedure.

Other works ([1] and [13]) provide decision procedures for deterministic
propositional dynamic logic DPDL. It interprets formulas and programs only
over deterministic Kripke models; these are Kripke models (g, ν, π) in which
each π(A) is a partial function. For each S ∈ g there is thus at most one
T ∈ g such that S

A→ T . Not every satisfiable PDL formula is also satisfiable
in such a model: The formula ¬[A]p ∧ ¬[A]¬p for example is only satisfied in
a state S for which there exist two states S

A→ T, T ′ such that T ⊩ p and
F ′ ⊩ ¬p.

As explained in VARDI, WOLPER [13], every formula which is satisfiable in
a deterministic Kripke model has a so-called tree-model.
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↓ page 13 This is a Kripke model (g, ν, π) where the structure (g, ∪A∈Pπ(A)) is a tree
(see 1.4). Moreover it is shown that for each formula P one can construct
an automaton AP of size cl(P )2 for certain c, which accepts exactly the tree-
models of P . The formula P is thus satisfiable exactly if AP accepts any tree.
Procedures to decide this problem are already known, we refer the interested
reader to the bibliography in [13].

↓ page 14
1.4 Tableaus
In this section we define tableaus and introduce the main ingredients of
tableau-calculi.

Definition 6. The tuple (g,◁) of a set g and a relation ◁ over g is called
a structure. The elements s, t, . . . of g are called nodes; a set s0, . . . , sn of
nodes such that s0 ◁ . . . ◁ sn is called path (from s0 to sn).
If there is a path from s to t, then we write s ≤ t; the relation ≤ is thus the
reflexive transitive closure of the relation ◁. For s ≤ t and s ̸= t we write
s < t. If s < t then t is called successor of s and s is called predecessor of
t. In case there is no u ∈ g such that s < u < t we also call them direct
successor and direct predecessor, respectively. A node without successors is
called an end node.

Definition 7. A tree is a structure (T,◁) with the following properties:

(i) There is exactly one node t0 ∈ T without predecessors. This node is
called the root of (T,◁).

(ii) For each node s ∈ T there is exactly one path from t0 to s.

We call a tree (T ′,◁′) a subtree of (T,◁) iff T ′ ⊆ T and ◁′ = ◁ |T ′, and
if for s, t ∈ T ′ such that s < t also every node u with s < u < t is also in
T ′. The length of a tree (T,◁) is the number of nodes in the longest path in
(T,◁).

Definition 8. A Tableau T (over a set of formulas FT ) is a structure of the
form (T,◁, x, FT ). Here (T,◁) is a finite tree and x is a function mapping
each node t to a finite set of formulas x(t) ⊆ FT satisfying the following
condition:

If x(s) is satisfiable and s is not an end node, then x(t) is satisfiable
for at least one direct successor t of s.

↓ page 15 We will not always strictly distinguish between a structure T and the set of
nodes T and we will say that we have nodes s, t, . . . ∈ T . Moreover we will
identify nodes with their sets of formulas, unless this would cause confusion.
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We thus will talk about a tableau “with root X” or “a tableau for X” when
the root of the tableau is mapped to the set of formulas X.

A Tableau-Calculus consists of two components:

• a set of rules which define how a tableau for X can be constructed,
starting from the root X and creating new nodes step by step.

• an easy to check property of tableaus which implies that the root X is
not satisfiable. Tableaus with this property are called closed.

A tableau-calculus is called complete iff the rules allow us to construct a closed
tableau for every non-satisfiable set of formulas X. A complete calculus is
a useful decision procedure if for every non-satisfiable X there is a closed
tableau of a size not above a computable limit which only depends on l(X) :=∑

P ∈X l(P ).

Before we present the tableau-calculus for PDL, we will give a complete
calculus for the decision problem whether a formula from the set F(A)
is satisfiable. This is essentially the calculus for the modal logic K from
RAUTENBERG [12].

Definition 9. A set of formulas X is closed iff we have 0 ∈ X or it contains
a formula and its negation. The set is called simple if all formulas P ∈ X are
(negated) propositional variables or of the form [A]R or ¬[A]R. Moreover, let
XA := {R | [A]R ∈ X}.

↓ page 16 In the above we say that a formula P is of the form [A]R if there are A ∈ P0
and R ∈ F such that P = [A]R.

Lemma 1. A simple set of formulas X is satisfiable if and only if it is not
closed and for all ¬[A]R ∈ X also XA; ¬R is satisfiable.

Proof. Let X be satisfiable. Then we have S ⊩µ X in a Kripke model
µ = (g, ν, π) and for each ¬[A]R ∈ X there is a SA,R ∈ g with S

A→ SA,R and
S ⊩ XA; ¬R.
For the other direction, suppose that X is not closed, and that for each
¬[A]R ∈ X there is a Kripke model µA,R which has a state SA,R such that
SA,R ⊩ XA; ¬R. One now combines all µA,R with a new state S0 to a new
Kripke model. We assume w.l.o.g. that all gA,R are disjoint and that S0 is
not in any gA,R. Let g := {S0} ∪ ⋃{gA,R | ¬[A]R ∈ X}. Let ν ′(p) := {S0}
if p ∈ X and ν ′(p) := ∅ otherwise (here we use that X is not closed). Let
ν(p) := ν ′(p) ∪ ⋃{νA,R(p)}. Moreover, let π′(A) := {(S0, SA,R) | ¬[A]R ∈ X}
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and π(A) := π′(A) ∪ {πA,R | ¬[A]R ∈ X}. In µ := (g, ν, π) we then have
S0

A→ SA,R for all ¬[A]R ∈ X. One quickly checks that S0 ⊩µ X.

The rules of the calculus are as follows:
X; ¬¬P(¬)

X; P
X; P ∧ Q(∧)
X; P ; Q

X; ¬(P ∧ Q)(¬∧)
X; ¬P | X; ¬Q

X; ¬[A]P(K)
XA; ¬P

We use the same notation for rules as in [12]: Successors of a node Z can be
generated using the rule (¬∧), if it is of the form X; ¬(P ∧ Q), i.e. if there are
X ⊆ F and P, Q ∈ F such that Z = X; ¬(P ∧ Q). The node Z is then given
two successors X; ¬P and X; ¬Q. This procedure is called the application
of the rule (¬∧) on Z (or also on ¬(P ∧ Q) in Z). The application of other
rules is analogously. To each node only one rule may be applied once. In the
calculus we call a tableau T closed when all end nodes of T are closed.

↓ page 17 One constructs a closed tableau T for a non-satisfiable Z as follows: Let X
be an already constructed, non-satisfiable node of the tableau which is not
closed already. If X is not simple, then one of the rules (∧), (¬∧) or (¬) can
be applied to it. Then X is given one or two successors, and these nodes
are also not satisfiable. If instead X is simple, then by Lemma 1 there is a
¬[A]R ∈ X such that XA; ¬R is not satisfiable. One can then apply rule K
to obtain exactly this node.

Each successor Y of a non-satisfiable node X constructed in this way is also
non-satisfiable, and moreover we have l(Y ) < l(X). Finally one obtains a
tableau which is not longer than l(Z) and of which all satisfiable end nodes
are closed.

Example 2. We give a tableau for the set {r ∧ ¬[A]p, r → [A](p ∧ q)}. After
each node we indicate the rule which was used to construct its successors.
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r ∧ ¬[A]p; r → [A](p ∧ q)

r; ¬[A]p; r → [A](p ∧ q)

(∧)

r; ¬[A]p; ¬¬[A](p ∧ q)

(¬∧)

r; ¬[A]p; ¬r

(¬∧)

r; ¬[A]p; [A](p ∧ q)

(¬)

¬p; p ∧ q

K

¬p; p; q

(∧)

↓ page 18
1.5 Local Tableaus
As we have seen in the example in the previous section, one can easily
construct a tableau for any set of formulas X ⊆ F(A) such that all end nodes
X1, . . . , Xn are simple and

S ⊩µ X ⇐⇒ S ⊩µ Xi for some i ≤ n.
holds for any state S of any Kripke model µ. We now want to show how to
construct a tableau with a similar property for any X ⊆ F . To do so, we
need to extend the set of “formulas” FT , which are used in nodes of such
tableaus, beyond F .

Definition 10. An n-formula is a string, which is obtained by replacing one
or more program operators of the form [a∗] by [a(n)]. Let the function f map
each n-formula to the formula P ∈ F from which it can be obtained in this
way; and for all P ∈ F , let f(P ) := P . Let Fn be the set of all n-formulas.
We also denote n-formulas with the letters P, Q, . . . and we also call them
formulas. To stress that a formula is not an n-formula we also call it normal.
We define for all P ∈ Fn S ⊩ P : ⇐⇒ S ⊩ f(P ). This implicitly defines
when a set X ⊆ F ∪ Fn is satisfiable. From now on by “set of formulas” we
always mean a (finite) set X ⊆ F ∪ Fn. We call a node normal if it only
contains normal formulas, otherwise we also call it an n-node. A node which
contains a formula of the form ¬[a(n)]P we call a ¬[a(n)]-node.

14
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Definition 11. A local tableau is a tableau which at its root has a normal
set of formulas, and which is constructed using the classical rules

X; ¬¬P(¬)
X; P

X; P ∧ Q(∧)
X; P ; Q

X; ¬(P ∧ Q)(¬∧)
X; ¬P | X; ¬Q

↓ page 19 and the following rules:
X; ¬[a ∪ b]P(¬∪)

X; ¬[a]P | X; ¬[b]P
X; ¬[Q?]P(¬?)
X; Q; ¬P

X; ¬[a; b]P(¬; )
X; ¬[a][b]P

X; [a ∪ b]P(∪)
X; [a]P ; [b]P

X; [Q?]P(?)
x; ¬Q | X; P

X; [a; b]P(; )
X; [a][b]P

X; ¬[a∗]P(¬n)
X; ¬P | X; ¬[a][a(n)]P

X; [a∗]P(n)
X; P ; [a][a(n)]P

In addition, the following extra conditions must be obeyed when constructing
local tableaus:

1. Instead of a node X; ¬[A]P or X; [A]P with an n-formula P we always
obtain the node X; ¬[A]f(P ) or X; [A]f(P ), respectively.
That is, if an atom A is reached, switch back from (n) to ∗ in P .

2. Instead of a node X; [a(n)]P we always obtain the node X.

3. If it is possible, then a rule must be applied to an n-formula.

4. No rule may be applied to a ¬[a(n)]-node.

If we start with a set X, and application of one of the rules yields the sets
X1, . . . , Xn (n ≤ 2), then also here we always have S ⊩µ X ⇐⇒ S ⊩µ

Xi for some i ≤ n. Moreover, when a rule is applied to any formula then
it is replaced by a formula which is simpler in a certain sense; for example,
formulas are shorter or start with a simpler program operator. A normal set,
to which no more rules can be applied, is simple.

Definition 12. A local tableau is called maximal, iff no more rules can be
applied to any of its end nodes.

Wherever an n-node occurs in a tableau, then it is located in a sub-tableau
which consists only of n-nodes, and which has end nodes that are ¬[a(n)]-nodes
or normal successors due to extra conditions 1 or 2 in Definition 11. We give
an example.

↓ page 20
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¬[(A ∪ p?)∗]q

¬q

(¬n)

¬[A ∪ p?][(A ∪ p?)(n)]q

(¬n)

¬[p?][(A ∪ p?)(n)]q

(¬∪)

¬[A][(A ∪ p?)∗]q

(¬∪)

p; ¬[(A ∪ p?)(n)]q

(¬?)

Lemma 2. For every X there is a maximal local tableau of length not greater
than l(X).

Proof. We first define in parallel for each program a and each formula P its
measure m:

m(A) := 0
m(a(n)) := 0
m(Q?) := max(m(Q), m(¬Q)) + 1
m(a; b) := m(a) + m(b) + 1

m(a ∪ b) := m(a) + m(b) + 1
m(a∗) := 1 + m(a)

m(0) := 0
m(p) := 0

m(¬p) := 0
m(¬¬P ) := 1 + m(P )

m(P ∧ Q) := 1 + m(P ) + m(Q)
m(¬(P ∧ Q)) := 1 + m(¬P ) + m(¬Q)

m([a]P ) := m(a) + m(P )
m(¬[a]P ) := m(a) + m(¬P )

By induction one shows that the numbers m(a) (and m(P )) are upper bounds
for the number of different formulas which can appear in a local tableau for
[a]0 or ¬[a]0 (and for P , respectively) and to which a rule can be applied.
We note that in each application of a rule a formula with a lower measure is
generated. One further shows by induction that m(a) < l([a]) for all programs
a and m(P ) < l(P ) for all formulas P . It immediately follows that a local
tableau for X contains less than l(X) different formulas to which a rule can
be applied.
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↓ page 21 Let now X1 ◁ . . . ◁ Xn be a path of a local tableau T , which is constructed
in such a way that (adhering to extra condition 3) in each node Xi (i < n) a
formula Pi with maximal m(Pi) is getting replaced. We now show:

For j > i we have Pi /∈ Xj.

Suppose Pi is normal. We have m(Pj) ≤ m(Pi) for all j ≥ i. No Pj can yield
a Pi, hence Pi /∈ Xj for j > i.

Suppose Pi is an n-formula and let Xl be the first normal node after Xi. For
i ≤ j < l we also have m(Pj) ≤ m(Pi), hence Pi /∈ Xj for i < j ≤ l. If Pi

is a non-negated n-formula, then Pi is of the form [a1] . . . [an][a(n)]Q with a
normal Q, and we have Pk = [a∗]Q for some k < i. Because [a∗]Q /∈ Xj holds
for j > k, and Pi can only be generated from [a∗]Q, we also have Pi /∈ Xj for
all j > l. The analogue claims hold for negated n-formulas.

Along the path no formula is replaced more than once, and no more than
m(X1) many formulas occur, hence it cannot be longer than l(X1).

Recall from Definition 8 that x(t) denotes the set of formulas at node t.

Lemma 3. If s and t are nodes of a local tableau with s < t, then x(s) ̸= x(t).

Proof. When a rule is applied any formula P is replaced by (maximally)
two formulas P1, P2. Because m(P ) > m(Pi) (i = 1, 2) using the measure
m′(X) := ∑

P ∈X 3m(P ) we always have m′(x(s)) > m′(x(t)).

Lemma 4. Let µ be a Kripke model over g, and let S ∈ g. Let X = X ′; ¬[a]P
be a node of a local tableau with S ⊩ X. Let X ′ be normal and let P be normal
if a is atomic; otherwise let P be n-formula. Moreover let T ∈ g with S

a→ T
and T ⊩ ¬P .

Then there is a normal node Y ≥ X with S ⊩ Y , containing the formula
¬[a1] . . . [an]f(P ) for some n ∈ ω.

If n > 0, then a1 is an atomic program and we have S
a1;...;an→ T . If n = 0 then

S = T .

Proof. By induction over a.

a = A: The claim holds with Y = X.

a = Q?: There is only one state T with S
Q?→ T , namely T = S. The

immediate successor of X is X ′; Q; ¬f(P ), it is normal and holds in S.

↓ page 22
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a = b ∪ c: We have S
b→ T or S

c→ T . Suppose w.l.o.g. that S
b→ T . Then

the successor X; ¬[b]P of X holds in S. By induction hypothesis we get
the claim.

a = b; c: There is a U ∈ g such that S
b→ U

c→ T . In U we have ¬[c]P and
thus we can apply the induction hypothesis to the successor X ′; ¬[b][c]P .
Hence there is a Z ≥ X with S ⊩ Z and Z contains the n-formula
¬[a1] . . . [an][c]P . If n > 0 then we are done, otherwise we again apply
the induction hypothesis to Z.

a = b∗: If S = T , then the successor X ′; ¬P holds in S. If S ̸= T , then there
exists a U ∈ g such that U ̸= S and S

b→ U
b∗
→ T and U ⊩ ¬[b∗]P . Hence

we can apply the induction hypothesis to the successor X; ¬[b][b(n)]P .
Because S ̸= U there exists a successor of this node which holds in S
and which contains an n-formula of the form ¬[a1] . . . [an][b(n)]P where
a1 is atomic.

Lemma 5. Let T be a local tableau in which each end node is normal or a
¬[a(n)]-node. Let X1, . . . , Xn be the normal end nodes. Let S be a state of a
Kripke model µ over g.

We have
S ⊩µ X ⇐⇒ S ⊩µ Xi for some i ≤ n

Proof. Right to left: From Y ◁ Z and S ⊩µ Z we get S ⊩µ Y , and thus from
S ⊩µ Xi we immediately get S ⊩µ X.

For the other direction (left to right) we show that for each normal node
Y ∈ T with S ⊩µ Y there exists a normal node Z > Y with S ⊩µ Z. We
only need to consider the two cases in which not all immediate successors of
Y are normal:

• To each node which contains a non-negated n-formula a rule can be
applied. If the successor of Y is obtained using (n), one can thus find a
path of nodes that are satisfied in S, leading from Y to a normal node
Z.

↓ page 23 • Suppose Y = Y ′; ¬[a∗]P , and the successors of Y are obtained by
replacing ¬[a∗]P according to (n). If a is atomic, then already both
successors of Y are normal. Hence suppose a is not atomic. Then there
is a state U ∈ g such that S

a∗
→ U and U ⊩µ ¬P : If S = U , then

already the successor Y ′; ¬P of Y is satisfied in S and normal. If S ≠ U ,
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then there exists a T with T ̸= S and S
a→ T

a∗
→ U and T ⊩ ¬[a∗]P .

Applying Lemma 4 to Y ; ¬[a][a(n)]P and T gives us a node Z > Y
which is satisfied in S.

↓ page 24
1.6 PDL-Tableaus
Suppose the set of formulas X contains a formula of the form ¬[a1] . . . [an]P .
A necessary condition for S ⊩ X to hold in a Kripke over g, is that there
exist states T1, . . . , Tn ∈ g such that S

a1→ T1
a2→ . . .

an→ Tn and Tn ⊩ ¬P .

In this section we provide rules for PDL-tableaus with which this condition
about X can be checked. This includes a rule which marks a formula of the
form ¬[a1] . . . [an]P with the formula P . We then write ¬[a1] . . . [an]P P . If a
set of formulas contains a marked formula we call it loaded, otherwise free.
Analogously we will talk about loaded and free nodes.

The rules of PDL-tableaus are those of local tableaus together with the
following:

X; ¬[a0] . . . [an]P(M+) X free
X; ¬[a0] . . . [an]P P

the loading rule,

X; ¬[a]P R

(M−)
X; ¬[a]P

the liberation rule,

X; ¬[A]P R

(At)
XA; ¬P R\P

the critical rule.

In the above we use ¬P R\P :=

¬P if R = P

¬P R otherwise

The rules (¬∪), (¬n), (¬; ) and (¬?) for local tableaus should also be applicable
to marked formulas. The generated formulas then have to be marked in a
specific way which is yet to be determined. We thus state these rules again
for applications to marked formulas.

X; ¬[a ∪ b]P R

(¬∪)
X; ¬[a]P R | X; ¬[b]P R

X; ¬[a; b]P R

(¬; )
X; ¬[a][b]P R

X; ¬[a∗]P R

(¬n)
X; ¬P R\P | X; ¬[a][a(n)]P R

X; ¬[Q?]P R

(¬?)
X; Q; ¬P R\P
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↓ page 25 Note that when applying the rules (At), (¬n) and (¬?) to a marked formula,
the marking disappears if and only if the resulting formula is the negation of
the mark.

Definition 13. Let X1 ◁ . . . ◁ Xn be a path of a tableau constructed using
the rules defined so far. If no Xi (i > 1) is obtained using (At), then we call
the path uncritical, otherwise critical. If all Xi are loaded, then we also call
the path loaded.

Definition 14. A PDL-tableau is a tableau constructed using all the rules
defined so far, which in addition to the extra conditions 1 to 4 also adheres to
the following extra conditions and restrictions:

5. To a node obtained using (M+) we may not apply (M−).

6. A normal node X = x(t) for which there is an s < t with x(s) = x(t),
is an end node, if the path from s to t is critical, and when the path
from s to t is loaded, if X is loaded.

7. Every loaded node that is not an end node by condition 6, has a successor.

A local PDL-tableau is a PDL-tableau in which no node is obtained using
(At).

Each PDL-tableau T can in a natural way be partitioned into local PDL-
tableaus T1, . . . , Tn, namely into the maximal local sub-tableaus. From each
normal end node of a Ti which is not already an end node of T we obtain the
root of a Tj ̸= Ti using (At). A local PDL-tableau only differs from a local
tableau in possible applications of (M+) and (M−), so they have mostly the
same properties. We therefore leave out the addition PDL where it does not
lead to misunderstandings. We also just talk about tableaus when we mean
PDL-tableaus.

↓ page 26 Lemma 6. There is a maximum length for tableaus for X.

Proof. Similar to Lemma 2 one first shows that a tableau T for X cannot
contain more than n := l(x) different non-marked formulas. Moreover, it
follows from Lemma 3 for all nodes s < t ∈ T where x(s) = x(t) that the
path from s to t is critical. Hence no path contains more than 2n free normal
nodes.

Furthermore in T there cannot be more than n · 2n different loaded sets for
each possible marking. A loaded path thus contains at most n · 2n normal
nodes. If there are only n-nodes between two such nodes, then there are less
than 2n nodes, because they are then on the same uncritical path. A loaded
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path is thus not longer than n · 22n. Between two loaded paths there is at
least one free node, hence only less than 2n loaded paths can follow after each
other. The whole tableau T is thus no longer than n · 24n.

Definition 15. If T is a tableau, then we define for s, t ∈ T :

s ◁′ t : ⇐⇒ s ◁ t, or s is an end node, and there exists a u < s with
u ◁ t and x(u) = x(s), from which a loaded and critical
path leads to s.

Moreover, let ≤′ denote the reflexive transitive closure of ◁′. The relation is
in general not a partial order (i.e. it might not be anti-symmetric). However,
for free nodes X, Y we have X < Y ⇐⇒ X <′ Y . A sequence t1◁′ . . .◁′ tn

is called a ◁′-path.

Lemma 7. Let S be a state of a Kripke model over g, and let X = X ′; ¬[a]P R

be a normal node true in S which is part of tableau T in which no node is
obtained using (M−). Moreover, let T ∈ g with S

a→ T and T ⊩ ¬P . Then
there is a ◁′-path of satisfiable nodes from X to a normal node Y = Y ′; ¬P R\P

which holds in T .

Proof. We first note that in T every loaded node s has successors with
respect to ◁′, obtained by applying a rule to x(s). Then there exists a
◁′-path of satisfiable nodes from X to a node Z = Z ′; ¬[a]P R which is true
in S, and whose successors are obtained by replacing the marked formula.
The remainder of the proof is by induction on a.

↓ page 27 Base case:

a = A: Let T ∈ g with S
A→ T and ⊩ ¬P . The ◁′-successor Z ′

A; ¬P R\P of Z
is true at this T and is of the required form.

a = Q?: We have T = S. The ◁′-successor Z ′; Q; ¬P R\P of Z is thus true in
T and is of the required form.

Induction hypothesis: Assume now that the claim holds for programs b and c.

Induction step:

a = b ∪ c Let S
b∪c→ T and T ⊩ ¬P . Then S

b→ T or S
c→ T and one of the

◁′-successors Z ′; ¬[b]P R and Z ′; ¬[c]P R of Z holds at S. Applying the
induction hypothesis to this node gives the claim.

a = b; c For S
b;c→ T there exists a U with S

b→ U
c→ T and U ⊩ ¬[c]P .

Applying the induction hypothesis to the ◁′-successor Z ′; ¬[b][c]P R of
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Z and U yields a node W = W ′; ¬[c]P R with Z <′ W , which holds in
U . Applying the induction hypothesis to W and T gives the claim.

a = b∗ If S
a∗
→ T , then there is a minimal n such that S

an

→ T . We prove this
case by induction over n.

Base case n = 0: If n = 0, then S = T , the ◁′-successor Z ′; ¬P R\P

holds in S, and it is of the required form.

Induction hypothesis: Suppose the claim is proven for m = n − 1.

Induction step: If n > 0, then there exists a U ∈ g with U ̸= S and
S

b→ U
bm

→ T . The ◁′-successor Z ′; ¬[b][b(n)]P holds in S. By Lemma 4
there is a normal node W ≥′ Z with W = W ′; ¬[a1] . . . [ak][b∗]P R such
that S

a1;...;ak→ U and which holds in S. All ai have lower complexity
than b∗, applying k-many times the hypothesis of the induction over
the program structure yields the existence of a node V >′ W with
V = V ′; ¬[b∗]P R which holds in U . Now U

bm

→ T , applying the hypothesis
of the induction over n gives the claim.

↓ page 28 Lemma 8. Let T be a tableau and let Y ∈ T be a free satisfiable normal
node. If Y is not an end node, then there is a free satisfiable normal node
Z > Y .

Proof. If (M+) is not applied to Y , then this is the statement of Lemma 4.
If (M+) is applied to Y , then the successor of Y is a normal node of the form
Y ′; ¬[a1] . . . [an]P P . With Lemma 7 one finds a ◁′-path of satisfiable nodes
to a normal free node Z which is of the form Z ′; ¬P P \P , or which is obtained
by applying (M−). In both cases is Z a satisfiable normal free node with
Z > Y .
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↓ page 29
1.7 The PDL-Calculus
Definition 16. A tableau T is called closed when all normal free end nodes
of T are closed.

In the remainder of Part 1 we show that the PDL-Calculus we defined in the
previous sections is complete; that is, any set of formulas X ⊂ F is satisfiable
if and only if there is no closed tableau for X.

However, before that we give an example of a closed tableau for the set
X = {¬[(A ∪ p?)∗]q, [A∗]q}.

¬[(A ∪ p?)∗]q ; [A∗]q

¬[(A ∪ p?)∗]qq ; [A∗]q

(M+)

¬[(A ∪ p?)∗]qq ; q ; [A][A∗]q

(n)

¬q ; q ; [A][A∗]q

(¬n)

¬[(A ∪ p?)][(A ∪ p?)(n)]qq ; q ; [A][A∗]q

(¬n)

¬[A][(A ∪ p?)∗]qq ; q ; [A][A∗]q

(¬∪)

¬[p?][(A ∪ p?)(n)]qq ; q ; [A][A∗]qq

(¬∪)

¬[(A ∪ p?)∗]qq ; [A∗]

(At)

p ; ¬[(A ∪ p?)(n)]qq ; q ; [A][A∗]q

(¬?)

This tableau has three end nodes, whose properties we shall discuss briefly.
Recall that ‘normal’ means ‘no (n)’ and ‘free’ means ‘no markings’.

• The end node {¬q ; q ; [A][A∗]q} is closed. It is normal and free, and
all such end nodes of a closed tableau are closed.

↓ page 30 • The end node {¬[(A ∪ p?)∗]qq ; [A∗]} is not closed. But it is loaded, and
it has a predecessor which has the same set (of formulas), and moreover
all nodes between them are loaded. Hence by condition 6 it is an end
node.

• The end node {p ; ¬[(A ∪ p?)(n)]q ; q ; [A][A∗]qq} is a ¬[a(n)]-node. No
rule may be applied to it.
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We note that each end node of a closed tableau has at least one of these
properties.

Definition 17. A normal set of formulas X ⊆ F is called inconsistent if
there exists a closed tableau for X. Otherwise X is called consistent.

Theorem 2 (Correctness Theorem). Any satisfiable set of formulas X ⊆ F
is consistent.

Proof. It follows immediately from Lemma 8 that any tableau of a satisfiable
set of formulas X has a free satisfiable normal end node. In particular this
node is open. Hence X is consistent.

To show the other direction, i.e. that any consistent set of formulas is also
satisfiable, we will show how to use the open tableaus for X to construct a
model for X. For this we define a certain class of Kripke models, the class of
model graphs.

↓ page 31
1.8 Model Graphs
Definition 18. A set of formulas X is called saturated if it fulfils the following
conditions:

¬¬P ∈ X ⇒ P ∈ X

P ∧ Q ∈ X ⇒ P ∈ X and Q ∈ X

¬(P ∧ Q) ∈ X ⇒ ¬P ∈ X or ¬Q ∈ X

[a; b]P ∈ X ⇒ [a][b]P ∈ X

[a ∪ b]P ∈ X ⇒ [a]P ∈ X and [b]P ∈ X

[Q?]P ∈ X ⇒ ¬Q ∈ X or P ∈ X

[a∗]P ∈ X ⇒ P ∈ X and [a][a∗]P ∈ X

¬[a; b]P ∈ X ⇒ ¬[a][b]P ∈ X

¬[a ∪ b]P ∈ X ⇒ ¬[a]P ∈ X or ¬[b]P ∈ X

¬[Q?]P ∈ X ⇒ Q ∈ X and ¬P ∈ X

¬[a∗]P ∈ X ⇒ ¬P ∈ X or ¬[a][a∗]P ∈ X

Definition 19. A model graph is a Kripke model µ = (g, π, ν) fulfilling the
conditions (i) to (iv).

(i) Each element of g is a saturated set of formulas X with 0 /∈ X and
p ∈ X ⇒ ¬p /∈ X.
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(ii) If X ∈ g and p ∈ X, then X ∈ ν(p).
This should be: “p ∈ X iff X ∈ ν(p).”, see Definition 4.18 in [14].

(iii) If (X, Y ) ∈ π(A) and [A]P ∈ X, then P ∈ Y .

(iv) If X ∈ g and ¬[a]P ∈ X, then there exists a Y ∈ g such that (X, Y ) ∈
π′(a) and ¬P ∈ Y .

Here π′ is a function on P, which for P0 agrees with π, for tests is defined by

π′(P?) := {(X, X) | X ∈ g and P ∈ X}

and for programs of the form a; b, a ∪ b and a∗ is defined inductively like π.

For each Kripke model one can easily construct a model graph:

For S ∈ g let XS := {P ∈ F | S ⊨µ P}, let g′ := {Xs | S ∈ g}.
Moreover, let π′(A) := {(XS, XT ) | XS ⊆A XT } for all A ∈ P0
and ν ′(p) := {XS | p ∈ XS} for all p ∈ F0.

It is easy to show that µ′ := (g′, π′, ν ′) fulfils conditions (i) to (iv).

↓ page 32 Lemma 9. If µ = (g, π, ν) is a model graph and X ∈ g and P ∈ X, then we
have X ⊩µ P .

Proof. We show by simultaneous induction over the structure of formulas and
programs, that

(+) P ∈ X ⇒ X ⊩ P (with ⊩ = ⊩µ)

(−) ¬P ∈ X ⇒ X ⊯ P

for all formulas P and

(0) [a]P ∈ X ⇒ if (X, Y ) ∈ π(a), then P ∈ Y

holds for all programs a (and all formulas P ).

If P = 0 or P is a propositional variable, then (+) and (−) hold because of
the conditions (i) and (ii).

Let thus P be a formula such that (+) and (−) are already proven for
its subformulas. Moreover, suppose (0) is already proven for all programs
occurring in P .

Suppose P = ¬Q. If P ∈ X, then by (−) and the induction hypothesis we
have X ⊮ Q, hence X ⊩ ¬Q = P , and thus (+). If ¬P = ¬¬Q ∈ X, then
because X is saturated we have Q ∈ X and X ⊩ Q by induction hypothesis.
But then we have X ⊮ ¬Q = P , and this is (−).
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Suppose P = Q ∧ R. If P ∈ X, then Q ∈ X and R ∈ X, which by induction
hypothesis implies X ⊩ Q and X ⊩ R, thus X ⊩ Q ∧ R = P , hence (+) holds.
If ¬P ∈ X, then ¬Q ∈ X or ¬R ∈ X, which implies X ⊮ Q ∧ R = P , which
is (−).

Suppose P = [a]Q. If P ∈ X, then by induction hypothesis for a we have
that for all Y such that (X, Y ) ∈ π(a) we already have Q ∈ Y . By induction
hypothesis for P we also have that Q ∈ Y implies Y ⊩ Q, hence we have
X ⊩ [a]Q. If ¬P ∈ X, then for every test which appears in a we already
have (+). From (X, Y ) ∈ π′(R?) we thus get (X, Y ) ∈ π(R?), and thus
(X, Y ) ∈ π′(a) implies (X, Y ) ∈ π(a). Hence by condition (iv) there exists a
Y such that (X, Y ) ∈ π(a) and ¬Q ∈ Y . By induction hypothesis we have
Y ⊩ ¬Q, and thus X ⊮ [a]Q.

For atomic programs (0) always holds by condition (iii). Let thus [a]P ∈ X
and a a non-atomic program such that (0) is already proven for all its
subprograms. Moreover, suppose (0) is already proven for all tests which
occur in a.

↓ page 33 Suppose a = R?. Because X is saturated we have ¬R ∈ X or P ∈ X. If
(X, Y ) ∈ π(R?), then Y = X and X ⊩ R. By (−) we then have ¬R ∈ X and
thus P ∈ X = Y .

Suppose a = b ∪ c. Because X is saturated we have [b]P ∈ X and [c]P ∈ X.
If now (X, Y ) ∈ π(a), then (X, Y ) ∈ π(b) or (X, Y ) ∈ π(c). In both cases by
induction hypothesis we get P ∈ Y .

Suppose a = b; c. We have [b][c]P ∈ X. If (X, Y ) ∈ π(a), then there exists a
Z ∈ g such that (X, Z) ∈ π(b) and (Z, Y ) ∈ π(c). By induction hypothesis
we have [c]P ∈ Z and P ∈ Y .

Suppose a = b∗. If (X, Y ) ∈ π(b∗), then there is a minimal n ∈ ω such
that (X, Y ) ∈ π(bn). We now prove (0) by induction over n. The case
n = 0 is easy, because then X = Y and because X is saturated we already
have P ∈ X. Thus, suppose that that claim is proven for m = n − 1.
We have [b][b∗]P ∈ X and there is a Z ∈ g such that (X, Z) ∈ π(b) and
(Z, Y ) ∈ π(bn−1). By induction hypothesis for a it follows that [b∗]P ∈ Z,
and by induction hypothesis for n we get P ∈ Y .

↓ page 34
1.9 Consistent Nodes
To construct model graphs from tableaus, we define the following relations
for each tableau.
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Definition 20. Let X < Y be nodes of a tableau. We write
X

A→ Y , if the critical rule is applied to exactly one node Z with X ≤
Z < Y and to a formula of the form ¬[A]P R.

X
P ?→ Y , if the path from X to Y is not critical and there exists a Z with

X ≤ Z ≤ Y and P ∈ Z.
X

a∪b→ Y , if X
a→ Y or X

b→ Y .
X

a;b→ Y , if there exists a node Z with X < Z < Y , such that X
a→ Z

and Y
b→ Y .

X
a∗
→ Y , if the path from X to Y is not critical, or if X

ai

→ Y for some
i ≥ 1.

Moreover, if X < Y are such that Y is free and there is no free node Z such
that X < Z < Y , then we call Y a first free successor of X.

We also need a few results about occurrences of consistent nodes in tableaus.

Lemma 10. Every node X = X ′; ¬[a1] . . . [an]P P obtained using (M+), has
a free normal successor Y . If Y is a first free normal successor of a node
X = X ′; ¬[a1] . . . [an]P P , and is Y not obtained using (M−), then Y is of
the form Y = Y ′; ¬P , and we have X

a1→ . . .
an→ Y .

Proof. By induction over n and the construction of the ai.

It follows that in particular every free normal node of a tableau which is not
already an end node, has at least one free normal successor.

↓ page 35 Lemma 11. Let X ∈ T be a free normal node with the first free normal
successors Y1, . . . , Yn (n ≥ 1). If all Yi are inconsistent, then also X is
inconsistent.

Proof. For each i let Ti be a closed tableau for Yi.

If X is a node of a tableau Ti, then the sub-tableau of Ti consisting of all
nodes Y ∈ Ti such that X ≤ Y , is a closed tableau for X.

If X is not in any Ti node, then we build a new tableau for X by “cutting”
T at the nodes Yi and “stapling” onto them the corresponding Ti. The new
tableau is a closed tableau for X.

In both cases it follows that X is inconsistent.

Definition 21. A loaded normal set of formulas X is called inconsistent if
X− := {P | P ∈ X or P R ∈ X for a certain R} is inconsistent, otherwise
consistent.
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Lemma 12. If X is a free normal consistent node in a tableau T , then there
is a first free normal consistent successor Y > X such that every normal node
on the path from X to Y is consistent.

Proof. Let Y1, . . . , Yn be the first free normal consistent successors of X
(Lemma 11 guarantees that they exist). Towards a contradiction, assume
that for each i there is a normal inconsistent node Zi with X < Zi < Yi.
These nodes are all loaded. By application of (M−) to the Zi one obtains
a tableau in which all first free normal successors of X are inconsistent. By
Lemma 11 then X must be inconsistent; hence our assumption contradicts
the premise.

↓ page 36
1.10 The Completeness Theorem
Definition 22. We call a tableau T saturating, if the critical rule is only
applied to simple nodes.

Theorem 3 (Model Existence). If Z0 is a normal consistent set of formulas,
then there exists a model graph µ = (g, ν, π) and an S ∈ g with Z0 ⊆ S.

Proof. Let T0 be a maximal local tableau for Z0, in which (M+) is not used.
Moreover, let M0 be the smallest set of tableaus which

(a) contains T0 and

(b) for any simple consistent node Y of any T ∈ M0 also contains every
maximal saturating tableau for Y −

For nodes X, Y ∈ T ∈ M0, let

SX,Y := {f(P ) | there exists a Z such that X ≤ Z ≤ Y and P ∈ Z−},

g := {SX,Y | X and Y are consistent roots and end nodes of a
local sub-tableau of some T ∈ M0 and Y is simple.}

Each SX,Y is a saturated set of formulas and fulfils condition (i) for model
graphs. We note that |g| ≤ 2l(X). Moreover, for each S, T ∈ g let

S ∈ ν(p) : ⇐⇒ p ∈ S for all p ∈ F0
(S, T ) ∈ π(A) : ⇐⇒ SA ⊆ T for all A ∈ P0

With these definitions µ = (g, ν, π) fulfils the conditions (ii) and (iii) for
model graphs. By induction over a one easily shows that:
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If X, Y, X ′, Y ′ ∈ T ∈ M0 with SX,Y ∈ g and SX′,Y ′ ∈ g, and Z, Z ′

are nodes with X ≤ Z ≤ Y , X ′ ≤ Z ′ ≤ Y ′ and Z
a→ Z ′, then we

have (SX,Y , SX′,Y ′) ∈ π′(a).

We now show that µ also fulfils condition (iv). For this, let S ∈ g and
¬[a]P ∈ S. We have S = SX,Y for some nodes X, Y of some T ∈ M0. Let
X = X1 ◁ . . . ◁ Xn = Y be the path from X to Y . There exists a Xj with
¬[a]P ∈ X−

j (possibly ¬[a]P occurs as an n-formula; we ignore this now).
W.l.o.g. none of the Xi > Xj is obtained using (M−) or (M+).

↓ page 37 We now build the path Yj ◁ . . . ◁ Yn. Let Yj result from X−
j by marking

¬[a]P with P , and for k > j let Yk result from Yk−1 in the same way as X−
k

results from X−
k−1 (such that always Y −

k = X−
k ).

There can be two cases:

(1) Some Yk with k > j is free. Then we have Yj
a→ Yk, and in particular

(S, S) ∈ π′(a) and ¬P ∈ S.

(2) All Yk for k > j are loaded. The node Yn then contains a formula of the
form ¬[A][a1] . . . [al]P P . But now there exists a tableau T ′ ∈ M0 which
has the root X−

n which has the successor Yn and to which (M−) is not
applied. By Lemma 12 Yn has within this tableau a first free normal
consistent successor Z, such that every normal node on the path from
Yn to Z is consistent. Moreover there exists in T ′ a simple consistent
successor Z ′ of Z which is in the same local sub-tableau of T ′ as Z,
because T ′ is maximal.

Now consider the path

X1 ◁ . . . ◁ Xj ◁ Yj ◁ . . . ◁ Yn ◁ . . . ◁ Z ◁ . . . ◁ Z ′

Every normal node of the path is consistent. Every maximal uncritical
sub-path of this path ends with a simple node, because T ′ is saturating.
For all nodes V , W which are roots and end nodes of an uncritical
sub-path there exists a SV,W ∈ g. In particular there exists an S ′ ∈ g
with Z ⊆ S ′ and therefore ¬P ∈ S ′. By Lemma 10 we have Yj

a→ Z,
and therefore (S, S ′) ∈ π′(a).

It follows that µ = (g, ν, π) also fulfils condition (iv).

Theorem 4 (Completeness). Any set of formulas X ⊆ F is consistent if and
only if it is satisfiable.
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Proof. From the Model Existence Theorem 3 and Lemma 9 it follows that
any consistent set is satisfiable. Together with the Correctness Theorem 2
the claim follows.

↓ page 38
1.11 Extended PDL-Tableaus
We can often extend a complete tableau-calculus by adding more rules, such
that the construction of closed tableaus for inconsistent sets is simplified.
We will make use of this in Part 2. There we will also use (in addition) the
following rules:

X; [a∗; b]P(∗; )
X; [b]P | X; [a][a∗; b]P

X; [1?; a]P(?; )
X; [a]P

X; Y(F−) Y free
X

X; [1?]P(1?)
X; P

In addition, all applications of rules to normal free formulas may be interpreted
as replacements (i.e. as done so far) or as addition of formulas. A node X; P ∧Q
can thus get the successor X; P ∧ Q; P ; Q by application of (∧).

Definition 23. An extended PDL-tableau is a tableau constructed using the
rules defined so far. Such a tableau is called closed if and only if all normal
free end nodes are closed.

One easily checks that for a satisfiable set X there is no closed extended
PDL-tableau. It follows immediately that a set X is satisfiable if and only if
there is no closed extended tableau. Providing a closed extended tableau for
a set X thus also proves that it is not satisfiable.
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↓ page 39
2 Interpolation in PDL

2.1 The Interpolation Theorem
Many modal logics, including those mentioned in Section 1.2, have an inter-
polation property. This can be proven using suitable complete tableau-calculi
(RAUTENBERG [12]). In this part we will state an interpolation property
for PDL and use the PDL-calculus to prove that PDL does in fact have this
property.

From now on let F0(P ) and P0(P ) denote the sets of propositional variables
and atomic programs, respectively, which appear in the formula P . Moreover,
let S(P ) := F0(P ) ∪ P0(P ). Similarly, let S(a) be defined for all programs a.
Finally, for any set of formulas X, let S(X) := ∪P ∈XS(P ).

Definition 24. An interpolant for the pair (X1, X2) of sets of formulas is a
formula R such that S(R) ⊆ S(X1) ∩ S(X2) and for which X1; ¬R and X2; R
are inconsistent.

Theorem 5 (Craig Interpolation). Let P, Q be formulas such that ⊨ P → Q.
Then there is a formula R such that S(R) ⊆ S(P ) ∩ S(Q) and for which we
have ⊨ P → R and ⊨ R → Q.

Somewhat imprecisely we will also call a formula R with this property an
interpolant for P and Q. By our definition it is actually an interpolant for the
pair ({P}, {¬Q}). In the following we will show that for every pair (X1, X2)
such that X1; X2 is inconsistent there exists an interpolant. This implies
the Craig Interpolation Theorem 5 with X1 = {P} and X2 = {¬Q}, for the
inconsistency of P ; ¬Q means exactly ⊨ P → Q.

↓ page 40
2.2 Tableaus for Pairs of Sets of Formulas
We now want to introduce the concept of a tableau for a pair X1/X2 of sets
of formulas. Such tableaus are again finite trees (T ,◁); but each node t ∈ T
is assigned a pair of sets of formulas x1(t)/x2(t) by two functions x1 and x2.
We often identify nodes with the pair which is assigned to it. A node Y1/Y2
is called free, loaded, closed, normal, n-node or ¬[a(n)]-node, whenever Y1; Y2
is called like that. Such a tableau is constructed starting at the root X1/X2
by application of the rules of the PDL-calculus. We have to explain though,
how rules should be applied to a formula in a component of the pair Y1/Y2.

• If the application of any rule (but not (At)) to a formula P ∈ Y1 (where
Y1 is a node of a PDL-tableau) produces the formulas Z1, . . . , Zn (n = 1
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or n = 2), then the application of the same rule to P ∈ Y1 (Y1 component
of a node Y1/Y2) produces the pairs Z1/Y2, . . . , Zn/Y2. Analogously for
the application to a formula P ∈ Y2.

• When (At) is applied to a formula ¬[A]P R ∈ Y1 (where Y1 is a component
of the node Y1/Y2 and Y1 = Y ; ¬[A]P R for some Y ) we obtain the
pair YA; ¬P R\P /(Y2)A. Analogously for the application to a formula
¬[A]P R ∈ Y2.

During this construction also the conditions 1 to 5 and 7 from Definitions 11
and 14 must be obeyed. The condition 6 however must be formulated
differently for tableaus for pairs.

6’. A normal node x1(t)/x2(t) for which there exists an s < t such that
x1(s) = x1(t) and x2(s) = x2(t), is an end node whenever the path from
s to t is critical and when in addition the path is loaded in the case
that x1(t)/x2(t) is loaded.

↓ page 41 Additionally in the construction of a tableau for a pair the following condition
must be obeyed:

8. If there are two nodes s and t with the same loaded components in a
loaded sub-tableau, and if their respective successors result from an
application of a rule (not (M−)) to the loaded components, then the
same rule is applied to both nodes on the same formula.

Definition 25. We call a tableau for a pair X1/X2 closed, if all normal free
end nodes are closed. We call a normal pair X1/X2 inconsistent, if there
exists a closed tableau for X1/X2, otherwise we call it consistent.

Lemma 13. A normal pair X1/X2 is consistent if and only if X1; X2 is
consistent.

Proof. If X1/X2 is inconsistent, then there is a closed tableau for X1/X2.
By replacing each node Y1/Y2 by Y1; Y2 we essentially obtain an extended
PDL-tableau. The only problem might be that some nodes s < t violate
condition 6 from Definition 14. If t is loaded, then one can simply “cut off”
the tableau there; otherwise one can “cut out” the path from s to t to make
an extended PDL-tableau, as defined in Section 1.11. This tableau is also
closed, and thus X1; X2 is inconsistent.

For the other direction, if X1/X2 is consistent, then every tableau for X1/X2
is not closed. One can then (again by replacing each node Y1/Y2 by Y1; Y2)
use these tableaus to construct a model graph as described in the Model
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Existence Theorem 3 in which some state includes the set X1; X2. Hence in
this case also X1; X2 is consistent.

Corollary 1. If X1; X2 is inconsistent, then there exists a closed tableau for
X1/X2.

↓ page 42
2.3 Construction of the Interpolant
In this section we explain how to construct an interpolant for X1/X2 when
X1; X2 is inconsistent. For this we need a closed tableau T for X1/X2. This
tableau will first be simplified.

Definition 26. If T is a tableau for the pair X1/X2, then the tableau T I is
obtained from T by removing all n-nodes. Therefore, if s < t are two normal
nodes in T between which there are only n-nodes, then we have s ◁ t in T I .

We note that x1(s)/x2(s) and x1(t)/x2(t) differ in only one component. To
see this, suppose the rule (n) or (¬n) is applied to a formula in x1(s), then
(by condition 3) at every node u where s < u < t a rule is applied to x1(u)
(and not x2(u)) because only this set contains an n-formula.

Because T I does not contain any n-node, there is also no end node of T I which
would be a ¬[a(n)]-node. Every end node is thus closed or has a predecessor
with the same pair. If in fact T I has only closed end nodes, then one can
construct an interpolant for X1/X2 directly from T I . This is done by first
defining an interpolant for each end node of T I .

In the following we will denote formulas that are interpolants for certain pairs
with I, I1, I2,. . . .

Lemma 14. For every closed node Y1/Y2 of T I there exists an interpolant.

Proof. The pair Y1/Y2 is closed, if Y1; Y2 is closed. We thus have at least one
of the following cases:

↓ page 43 • 0 ∈ Y1 or P ; ¬P ⊆ Y1 for some formula P :
then we have Y1 ⊨ 0 and Y2 ⊨ ¬0, hence let I := 0.

• 0 ∈ Y2 or P ; ¬P ⊆ Y2 for some formula P :
then we have Y1 ⊨ ¬0 and Y2 ⊨ 0, hence let I := ¬0.

• P ∈ Y1 and ¬P ∈ Y2 for some formula P :
then we have Y1 ⊨ P and Y2 ⊨ ¬P , hence let I := P .

• ¬P ∈ Y1 and P ∈ Y2 for some formula P :
then we have Y1 ⊨ ¬P and Y2 ⊨ P , hence let I := ¬P .
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Moreover, in all cases we have S(I) ⊆ S(Y1) ∩ S(Y2), hence in all cases I is
an interpolant of Y1/Y2.

We can then define interpolants of each node for which the successors already
have interpolants. Intuitively, we construct the interpolant of X1/X2 “from
the leaves to the root”.

Lemma 15. Let Y1/Y2 be a node of T I with n direct successors for which in-
terpolants I1, . . . , In have already been found. Then there exists an interpolant
for Y1/Y2.

Proof. If the n successors are obtained using any rule besides (At), then we
have one of the following cases:

• The successors differ from Y1/Y2 only in the second component, they
are of the form Y1/Z1, . . . , Y1/Zn. Obviously we have Y1 ⊨ I1 ∧ . . . ∧ In.
Moreover Y2 only holds in a state in which also one of the Zi holds. But
then from Zi ⊨ ¬Ii for each i ≤ n we get that Y2 ⊨ ¬I1 ∨ . . . ∨ ¬In, and
thus Y2 ⊨ ¬(I1 ∧ . . . ∧ In). Hence let I := I1 ∧ . . . ∧ In. Because we have
S(Zi) ⊆ S(Y2) for each i, it follows that S(I) ⊆ S(Y1) ∩ S(Y2); hence I
is an interpolant for Y1/Y2.

• The successors differ from Y1/Y2 only in the first component, they are
of the form Z1/Y2, . . . , Zn/Y2. Obviously we have Y2 ⊨ ¬I1 ∧ . . . ∧ ¬In

and thus Y1 ⊨ ¬(I1 ∨ . . . ∨ In). Moreover Y1 only holds in a state in
which also one of the Zi holds. But then from Zi ⊨ Ii for each i ≤ n we
get that Y1 ⊨ I1 ∨ . . . ∨ In. Hence let I := I1 ∨ . . . ∨ In. Because we have
S(Zi) ⊆ S(Y2) for each i, it follows that S(I) ⊆ S(Y1) ∩ S(Y2); hence I
is an interpolant for Y1/Y2.

↓ page 44 Before we consider the second case (i.e. the (At) rule), we note that YA ⊨ P
always implies Y ⊨ [A]P . To see this, suppose S ⊩ Y for some (g, ν, π) and
S ∈ g. Then we have T ⊨ YA and thus T ⊩ P for all T ∈ g with S

A→ T . But
this means S ⊩ [A]P .

Moreover YA; ¬R ⊨ P always implies Y ; ¬[A]R ⊨ ¬[A]¬P , because if we have
S ⊩ Y ; ¬[A]R for some (g, ν, π) and S ∈ g, then there exists a T ∈ g with
S

A→ T and T ⊩ YA; ¬R. Because then T ⊩ P , we have S ⊩ ¬[A]¬P .

If now Y1/Y2 has a successor Z1/Z2 which is obtained using the critical rule
(At), and for which there already is an interpolant I, then we have one of the
following cases:
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• Y1 contains a marked formula of the form ¬[A]P R. Then we have
Z1 = ¬P R\P ; (Y1)A and Z2 = (Y2)A.

If Z2 is non-empty, then A ∈ S(Y1) ∩ S(Y2). As we have seen, Y1 ⊨
¬[A]¬I follows from ¬P R\P ; (Y1)A ⊨ I, and Y2 ⊨ [A]¬I follows from
(Y2)A ⊨ ¬I. Hence ¬[A]¬I is an interpolant for Y1/Y2

If Z2 is empty, then Y1 is already inconsistent. Then we have Y1 ⊨ 0
and Y2 ⊨ ¬0, and 0 is an interpolant for Y1/Y2.

• Y2 contains a marked formula of the form ¬[A]P R. Then we have
Z1 = (Y1)A and Z2 = ¬P R\P ; (Y2)A.

If Z1 is non-empty, then A ∈ S(Y1) ∩ S(Y2). As we have seen, Y1 ⊨ I
follows from (Y1)A ⊨ I and Y2 ⊨ ¬[A]I follows from ¬P R\P ; (Y2)A ⊨ I.

Hence [A]I is an interpolant for Y1/Y2

If Z1 is empty, then Y2 is already inconsistent. Then we have Y1 ⊨ ¬0
and Y2 ⊨ 0, and ¬0 is an interpolant for Y1/Y2.

This shows the lemma.

However, in general T I will not only have closed end nodes. Recall that also
those loaded nodes are end nodes which have a predecessor in the same loaded
sub-tableau of T I with the same pair.

↓ page 45 Hence in general it is not possible to construct an interpolant for the root
of a loaded sub-tableau using the methods described in Lemmas 14 and 15,
because there might be successors of this root that are not closed end nodes.
In the following we explain, how one can still construct interpolants for such
roots, as long as interpolants are known for their first free successors.

Let thus Y1/Y2 be a node of T I which was obtained using (M+); then Y1/Y2
is the root of a loaded sub-tableau of T I . Suppose that for all free successors
of Y1/Y2 we already have interpolants. We can then restrict our attention
to the case where Y2 contains the marked formula. For if that is not the
case, then we can swap the first and second component in all nodes of the
tableau (if I is an interpolant for Y1/Y2, then ¬I is an interpolant for Y2/Y1;
the interpolants found so far are thus to be replaced by their negations).
Moreover, we can assume Y1 ̸= ∅, because if we have Y1 = ∅, then Y2 is
already inconsistent and ¬0 is an interpolant for Y1 and Y2.

We will now define, which parts of T I we need for the construction of the
interpolant.
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Definition 27. Let T J be a sub-tableau of T I with the root Y1/Y2. Let a
node Z1/Z2 > Y1/Y2 be an end node of T J if it is minimal such that it fulfils
one of the following conditions:

• At Z1/Z2 the rule (M−) is applied.

• Z1/Z2 is free.

• The first component of its successor is empty.

• There is a predecessor of Z1/Z2 with the same pair.

↓ page 46 If a node has a predecessor to which the same pair is assigned, then we will
also call that other node a predecessor with the same pair in the following.

Lemma 16. T J has the following properties:

(a) Every component of every node is nonempty.

(b) For each end node t that has no predecessors with the same pair an
interpolant I(t) is known.

(c) There is at least one end node for which an interpolant is known.

Proof. It is obvious that (a) holds.

Let t be an end node of T J which has no predecessor with the same pair. If
x2(t) is free, then an interpolant for t is already known. If x2(t) is not free,
then (M−) is applied to t, or the first component of its successor t′ is empty
(which can only happen if (At) is applied to t). In the first case t′ is free,
whereby an interpolant for t′ and thus also for t is already known. In the
second case though already x2(t) is inconsistent, and ¬0 is thus an interpolant
for t. Hence we have (b).

In T I the node Y1/Y2 has at least one free successor t. For this node an
interpolant is known. Either this node is also in T J , or there is a node s < t
which is an end node of T J . But for s there is no successor with the same
pair in T J . Hence by (b) an interpolant for s is known. Therefore we also
have (c).

Definition 28. For each node t of T J let K(t) be the conjunction (Kon-
junktion) over all P ∈ x1(t). For any set T of nodes of T J let D(T ) be the
disjunction over all K(t) with t ∈ T . For T = ∅ let D(T ) := 0. We note that
for any T1 ⊆ T2 we have that D(T2) ⊨ P implies D(T1) ⊨ P . Moreover, let
T (Y ) denote the set of all nodes t of T J with x2(t) = Y .
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↓ page 47 For each Y appearing as a second component of a node in T J we define the
following partition of the set T (Y ):

Definition 29. The set T (Y )ϵ consists of all nodes s ∈ T (Y ) for which there
is no node t ∈ T (Y ) with s ◁′ t. Furthermore, let T (Y )I be the set of those
nodes s ∈ T (Y )ϵ for which there exists no node t ∈ T J with s ◁′ t. Finally,
let T (Y )◁ be the set T (Y )ϵ \ T (Y )I .

Each node s ∈ T (Y )I is an end node of T J for which an interpolant I(t)
is known, because it has no predecessor with the same pair. To any node
t ∈ T (Y )◁ that is not an end node of T J a rule is applied to x2(t). If Y is
free, then T (Y ) only consists of end nodes, and we have T (Y )◁ = ∅ and
T (Y )ϵ = T (Y )I .

Lemma 17. From D(T (Y )ϵ) ⊨ P it follows that D(T (Y )) ⊨ P .

Proof. The set T (Y ) together with the relation ◁′ is essentially a set of
trees, of which the end nodes are exactly the nodes of T (Y )ϵ. For the nodes
s, t1, . . . , tn ∈ T (Y ), where the ti are the ◁′-successors of s, we have that
K(ti) ⊨ P for all i always implies K(s) ⊨ P . Hence we have K(s) ⊨ P even
for all s ∈ T (Y ).

Definition 30. If T (Y )I = {t1, . . . , tn} with n > 0, then let I(Y ) be the
disjunction over all interpolants I(ti), if n = 0 let I(Y ) := 0.

Lemma 18. If T (Y )◁ = ∅, then I(Y ) is an interpolant for D(T (Y ))/Y .

Proof. Let T (Y )I = {t1, . . . tn}. Because D(T (Y )I) contains exactly the
K(ti) as disjuncts, and because we always have K(ti) ⊨ I(ti), we also
have D(T (Y )I) ⊨ I(Y ). Because T (Y )I = T (Y )ϵ, by Lemma 17 we have
D(T (Y )) ⊨ I(Y ). Moreover, because Y ⊨ ¬I(ti) holds for all ti ∈ T (Y )I , we
also have Y ⊨ ¬I(Y ). In addition we have S(I(ti)) ⊆ S(x1(ti)) ∩ S(Y ) for all
i, and thus the claim holds.

↓ page 48 Lemma 19. If D(T (Y )◁) ⊨ P , then D(T (Y )) ⊨ [¬I(Y )?]P .

Proof. If t ∈ T (Y )I , then K(t) ⊨ I(Y ). If t ∈ T (Y )◁, then K(t) ⊨ P .

Hence, if t ∈ T (Y )ϵ = T (Y )I ∪ T (Y )◁, then K(t) ⊨ I(Y ) ∨ P , and thus also
K(t) ⊨ [¬I(Y )?]P . Hence D(T (Y )ϵ) ⊨ [¬I(Y )?]P and by Lemma 17 the
claim follows.

We now define a tableau where to each node t we assign a pair D(T (Y ))/Y
or D(T (Y )◁)/Y together with a number k(t) ∈ {1, 2, 3}. We denote such a
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node with D(T (Y ))/k(t)Y or D(T (Y )◁)/k(t)Y . Here Y is always the second
component of a node of T J .

Definition 31. The tableau T K has as its root the node D(T (Y2))/1Y2. A
node D(T (Y ))/1Y of the tableau, for which no predecessor t with the same pair
and k(t) = 1 exists, has exactly one successor D(T (Y ))/2Y , otherwise it is
an end node. A node D(T (Y ))/2Y has a successor, namely D(T (Y )◁)/3Y iff
T (Y )◁ is nonempty; otherwise it is an end node. We note that T (Y )◁ is empty
when Y is free. If T (Y )◁ is nonempty, then the same rule is applied to every
node t ∈ T (Y )◁ in T J to the same formula. Hence there are sets of formulas
Z1, . . . , Zn such that each node t ∈ T (Y )◁ has exactly n successors with the
second components Z1, . . . , Zn. Then let the successors of D(T (Y )◁)/3Y be
exactly the pairs D(T (Z1))/1Z1, . . . , D(T (Zn))/1Zn.

If K is the number of different second components of T J , then T K is not
longer than 3K + 1.

In addition we define for all s, t ∈ T K with s ◁ t a program P(s, t) which we
call the canonical program from s to t. If then s, t are any nodes with s < t
and is s = s1 ◁ . . .◁ sn = t the path from s to t, and is ai = P(si, di+1) where
i < n the canonical program from si to si+1, then let P(s, t) := a1; . . . ; an−1

be the canonical program from s to t. For a = P(s, t) we also write s
a→′

t.

↓ page 49 In the following by an ‘i-node s’ we mean a node s of T K with k(s) = i.
Moreover with si, ti, . . . we always denote arbitrary i-nodes..

Definition 32. Let sj be a node such that for all t, t′ with sj ≤ t ◁ t′ the
canonical program from t to t′ is already defined and let si ◁ sj.

• If i = 2 and j = 3, then si is assigned a pair D(T (Y ))/2Y and sj a pair
D(T (Y )◁)/3Y . Let P(si, sj) := ¬I(Y )?.

• If i = 1 and j = 2, then si is assigned a pair D(T (Y ))/1Y and sj a pair
D(T (Y ))/2Y . Let t1, . . . , tn be all the successors of si with the same
pair and k(tl) = 1 for all 1 ≤ l ≤ n. If n = 0, then let P(si, sj) := 1?.
If n > 0, then let al be the canonical program from sj to tl. In this case,
let P(si, sj) := (a1 ∪ . . . ∪ an)∗.

• If i = 3 and j = 1, then si is assigned a pair D(T (Y )◁)/3Y and sj a
pair D(T (Z)◁)/1Z. The set Z here is obtained by applying some rule.
If this rule is not (At), then let P(si, sj) := 1?. Otherwise we have
Y = Y ′; ¬[A]P R and Z = Y ′

A; ¬P R\P for some Y ′ and ¬[A]P R. In this
case let P(si, sj) := A.
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It follows from this definition that if we have a = P(s, t) and if D(T )/iY is
the pair assigned to the node s, then we have S(a) ⊆ S(D(T )) ∩ S(Y ).

Lemma 20. Let si < sj. Let si be assigned the pair D(T )/iY and sj the
pair D(T ′)/jY . If a is the canonical program from si to sj, then D(T ′) ⊨ P
implies D(T ) ⊨ [a]P .

Proof. First, let si ◁ sj and suppose the claim is already proven for the
sub-tableau beginning at sj (induction hypothesis).

• If i = 2 and j = 3, then Y = Y ′, T = T (Y ) and T ′ = T (Y )◁, and
a = ¬I(Y )?. The claim follows by Lemma 19.

↓ page 50 • If i = 1 and j = 2, then Y = Y ′ and T = T ′ = T (Y ). If a = 1?,
then the claim is trivial. Suppose a = (a1 ∪ . . . an)∗. Then there are
successors t1, . . . , tn of sj, which have the pair D(T )/Y . For each tk

where k ≤ n let ak be the canonical program from sj to tk. From the
induction hypothesis it follows that D(T ) ⊨ [ak]P for all k, hence we
also have D(T ) ⊨ [a1 ∪ . . . ∪ an]P . But if D(T ) ⊨ [a1 ∪ . . . ∪ an]P follows
from D(T ) ⊨ P , then it also follows that D(T ) ⊨ [(a1 ∪ . . . ∪ an)∗]P .

• Ifi = 3 and j = 1, then T = T (Y )◁ and T ′ = T (Y ′). If a = 1?,
then for all t ∈ T the conjunction K(t) is a disjunct of D(T ′) and
we have K(t) ⊨ P . It follows that D(T ) ⊨ P and D(T ) ⊨ [1?]P . If
a = A for an atomic program A, then for all t ∈ T the conjunction over
x1(t)A is a disjunct of D(T ′), and we have x1(t) ⊨ [A]P . It follows that
D(T ) ⊨ [A]P .

If now si ◁̸ sj and s1; . . . ; an = P(si, sj), then D(T ′) ⊨ P already implies
D(T ) ⊨ [a1] . . . [an]P , which means D(T ) ⊨ [a1; . . . ; an]P .

Lemma 21. For each end node of T K that does not have a predecessor with
the same pair, there is an interpolant. Moreover, T K has at least one such
node.

Proof. Each end node T K that does not have a predecessor with the same
pair is assigned a pair D(T (Y ))/2Y for some Y such that T (Y )◁ is empty.
By Lemma 18 we have that I(Y ) is an interpolant for this pair.

The tableau obtained from T K by removing all first components of all pairs
and “taking out” all 2-nodes and 3-nodes, is a sub-tableau of a PDL-tableau
with the root Y2. (Is this a typo? What is Y2 here?)This tableau has at least
one end node Y that does not have a predecessor with the same pair. Hence
D(T (Y ))/2Y is the end node of T K which we were looking for.
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↓ page 51 Definition 33. Let t be an end node of T K, and let t be assigned the pair
D(T )/Y . If t has no predecessor with the same pair, let I(t) := I(Y ). For
all other end nodes let I(t) := 1.

Let s be a non-end node of T K and let s1, . . . , sn, n ≥ 1, be the direct
successors of s. If n = 1, a = P(s, s1) and a ̸= 1?, then let I(s) := [a]I(s1).
Otherwise let I(s) := I(s1) ∧ . . . ∧ I(sn). If t0 is the root of T K, then let
I0 := I(t0).

We now show that the formula I0 constructed in this way is an interpolant
for Y1/Y2.

Lemma 22. We have S(I0) ⊆ S(Y1) ∩ S(Y2).

Proof. First we have S(D(T )) ⊆ S(Y1) and S(Y ) ⊆ S(Y2) for each pair
D(T )/Y in T K . Hence for every end node t we already have S(I(t)) ⊆
S(Y1) ∩ S(Y2) and, by the remark right after Definition 32 above, also S(a) ⊆
S(Y1) ∩ S(Y2). Hence the claim follows.

Lemma 23. We have Y1 ⊨ I0.

Proof. We now distinguish the same cases as in Definition 33.

For each end node t of T K we have x1(t) ⊨ I(t) (either trivially, if I(t) = 1,
or by Lemma 16).

Let s1, . . . , sn be the direct successors of s, and suppose we have x1(si) ⊨ I(si)
for 1 ≤ i ≤ n. If n = 1, a = P(s, s1) and I(s) = [a]I(s1), then x1(s) ⊨ I(s)
is exactly the claim of Lemma 20. If n ≥ 1 and 1? = P(s, si) for all i,
then (still using Lemma 20) from x1(s) ⊨ [1?]I(si) for all i it follows that
x1(s) ⊨ I(s1) ∧ . . . ∧ I(sn), hence x1(s) ⊨ I(s). Therefore by induction we
also have x1(t0) ⊨ I0. Notably, the conjunction over Y1 is a disjunct of
x1(t0) = D(T (Y2)), hence we also have Y1 ⊨ I0.

Definition 34. Let J(t0) := ∅. Suppose for all t < s we already defined
J(t). Then let J(s) be the smallest set such that for all nodes t, t′ of T K

with the same pair and t < s ≤ t′, and for all formulas P ∈ J(t) ∪ {I(t)}
it holds that [P(s, t′)]P ∈ J(s) (for s = t′: that P ∈ J(s)). Moreover, let
K(s) := {I(s)} ∪ J(s) ∪ x2(s).

↓ page 52 Lemma 24. We have:

(a) K(t0) = I0; Y2
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(b) If t is an end node of T K which has no predecessor with the same pair,
then K(t) is inconsistent.

(c) If t < t′ are nodes with the same pair, then K(t) ⊆ K(t′).

Proof. All three claims follows easily from the definitions.

Lemma 25. If s1, . . . , sn are the direct successors of the node si ∈ T K , then
there is an extended tableau for K(si) with the end nodes K(s1), . . . , K(sn)
as well as (possibly) further inconsistent free end nodes.

Proof. We consider five cases. In the first three cases we have i = 1 or i = 2,
and si has exactly one successor si+1. Here we always have x2(si) = x2(si+1),
hence J(si+1) and I(si+1) should be constructed from K(si).

Case 1 We have i = 1, and there are m many 1-nodes t1, . . . , tm > s1 with
the same pair as s1. Then we have s1 b∗

→
′
s2, where b = a1 ∪ . . . ∪ am

and aj = P(s2, tj) for all 1 ≤ j ≤ m. We have I(s1) = [b∗]I(s2)
and the application of (∗; ) yields I(s2) together with [b][b∗]I(s2). Let
furthermore P ∈ J(s2). There are 1-nodes u, u′ in T K with the same
pair, with u < s2 < u′ and the canonical program s2 a→ u′ such that
P = [a]Q for some Q ∈ J(u) ∪ {I(u)}. Either u < s1, then we already
have [b∗; a]Q ∈ J(s1) and P can be constructed from this formula using
(∗; ), or we have u = s1, u′ = tj and a = aj for some 1 ≤ j ≤ m. If Q ∈
J(s1), then Q = [b∗; aj ]R for some R. Using (∗; ) we get [b][b∗; aj ]R, and
using (∪) j many times we get P = [aj]Q = [aj][b∗; aj]R. If Q = I(s1),
then we obtain already by j many applications of (∪) to the already
obtained formula [b][b∗]I(s2) the formula P = [aj]Q = [aj][b∗]I(s2).

↓ page 53 Case 2 We have i = 2, and there are no 1-nodes s > s1 with the same pair.
Then we have s1 1?→

′
s2. If P ∈ J(s2), then P = [a]Q for some a, Q and

[1?; a]Q ∈ J(s1). By application of (?; ) one obtains P = [a]Q. Then by
application of (1?) we get I(s2) from I(s1) = [1?]I(s2).

Case 3 We have i = 2, and with Y = x2(s3) we have s2 ¬I(Y )?→ s3. Sup-
pose P ∈ J(s3). We have P = [a]Q for some a, Q, and we have
[¬I(Y )?; a]Q ∈ J(s2). The application of (; ) yields [¬I(Y )?][a]Q and
the application of (?) yields two successors. One successor contains
¬¬I(Y ); Y and is inconsistent. To this one (M−) is applied, yielding a
free inconsistent node. The other successor contains P = [a]Q. In the
same way one builds I(s3) from I(s2) = [¬I(Y )?]I(s3).
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For the two remaining cases we have i = 3. Then si has n many successors
u1, . . . , un where the x2(uj) are obtained from x2(s3) by application of a rule.

Case 4 We have i = 3, n = 1, and x2(u1) is obtained from xs(s3) by
application of (At). Then we have s3 A→ u1 for some atomic program.
If P ∈ J(u1), then [A]P ∈ J(s3), or we have P = [a]Q for some a, Q
and [A; a]Q ∈ J(s3). In this case by application of (; ) one obtains the
formula [A]P = [A][a]Q. Moreover, I(s3) = [A]I(u1). But after this the
application of (At) yields all formulas of K(u1).

Case 5 We have i = 3, n ≥ 1, and the x2(uj) are obtained by application of a
rule other than (At) to x2(s3). Moreover we have s3 1?→

′
uj for all j ≤ n,

and if P ∈ J(uj), then [1?]P ∈ J(s3), or we have P = [a]Q for some
a, Q and [1?; a]Q ∈ J(s3). In any case one obtains P by application
of (1?) or (?; ). Finally, I(s3) = I(u1) ∧ . . . ∧ I(un). By (n − 1) many
applications of (∧) we obtain all I(uj).

In all cases we thus obtain nodes K ′
1, . . . , K ′

n with K(sj) ⊆ K ′
j for all 1 ≤

j ≤ n. By application of (F−) to these nodes one finally obtains the end
nodes K(s1), . . . , K(sn).

↓ page 54 Lemma 26. We have Y2 ⊨ ¬I0.

Proof. We construct an extended tableau for I0; Y −
2 , by first applying (M+)

to obtain the node K(t0) = I0; Y2. Starting from this node we use the method
described in Lemma 25 to construct for all nodes t ∈ T K the nodes K(t). In
this way we eventually obtain a tableau which as end nodes (besides possibly
some free inconsistent nodes) has exactly the nodes K(t1), . . . , K(tn), where
t1, . . . , tn are the end nodes of T K .

For each node ti that has no predecessor with the same pair, K(ti) is incon-
sistent, and if it is not already free itself, by application of (M−) we obtain a
free inconsistent node.

For each node ti that has a predecessor t′
i in T K with the same pair, we have

K(t′
i) ⊆ K(ti). By application of (F−) to K(ti) we thus obtain a node for

which there is a predecessor with the same set.

Hence we obtained an extended tableau for I0; Y −
2 where this set has only

inconsistent first free successors. Thereby I0; Y −
2 is inconsistent, and we have

Y2 ⊨ I0.

Lemma 27. If X1; X2 is inconsistent, then there is an interpolant for X1/X2.
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Proof. First there exists a closed tableau for X1/X2. For each free normal
end node of this tableau we can define an interpolant. For each node Y1/Y2
of the tableau, if interpolants are known for all its free successors, then using
the method described in this section we can construct an interpolant. Hence
step by step we can construct interpolants for every free node of the tableau,
in particular for X1/X2.

With this Lemma the proof of the Interpolation Theorem 5 is done.

↓ page 55
2.4 Practical Execution of a Construction
To construct an interpolant in practice, it is not necessary not go through all
steps described in the previous section. For example, in the construction of
the tableau T K we do not have to determine the first components of each node.
We only introduced them to prove the desired properties of the constructed
interpolants.

To demonstrate which steps actually have to be taken, as an example we now
construct an interpolant for the pair X1/X2 with

X1 = {[(A; A)∗](p ∧ [A; (B ∪ C)]0)} and X2 = {¬[A∗](p ∨ [C]q)}.

We note that S(X1) = {p, A, B, C}, S(X2) = {p, q, A, C} and S(X1) ∩
S(X2) = {p, A, C}.

Step 1: Construction of a closed tableau T for X1/X2.
On the following page in Figure 1 we provide such a tableau T . We use
the abbreviations Q = p ∧ [A; (B ∪ C)]0 and P := p ∨ [C]q. Moreover, if a
component of a node is identical to the same component of its predecessor,
then we indicate this with a dot and do not write it down again.

Step 2: Construction of interpolants for all nodes which do not have a
loaded successor that is an end node.
This can be done using Lemmas 15 and 16 without other intermediate steps.
We have written these interpolants next to the corresponding nodes of T .
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↓ page 56 [(A; A)∗]Q / ¬[A∗]P

[(A; A)∗]Q / ¬[A∗]P P

(M+)

p ∧ [A; (B ∪ C)]0 ; [(A; A)][(A; A)(n)]Q / .
(n)

p ∧ [A; (B ∪ C)]0 ; [A][A][(A; A)∗]Q / .
(; )

p ; [A; (B ∪ C)]0 ; [A][A][(A; A)∗]Q / .
(∧)

p ; [A][B ∪ C]0 ; [A][A][(A; A)∗]Q / .
(; )

. / ¬(p ∨ [C]q) I = p

(¬n)

. / ¬p ∧ ¬[C]q I = p

(¬)

. / ¬p ; ¬[C]q I = p

(∧)

. / ¬[A][A∗]P P

(¬n)

[B ∪ C]0 ; [A][(A; A)∗]Q / ¬[A∗]P P

(At)

[B]0 ; [C]0 ; [A][(A; A)∗]Q / ¬[A∗]P P

(∪)

. / ¬(p ∨ [C]q) I = [C]0
(¬n)

. / ¬p ∧ ¬[C]q I = [C]0
(¬)

. / ¬p ; ¬[C]q I = [C]0
(∧)

. / ¬p ; ¬[C]qq I = [C]0
(M+)

0 / ¬q I = 0
(At)

. / ¬[A][A∗]P P

(¬n)

[(A; A)∗]Q / ¬[A∗]P P

(At)

Figure 1: A closed tableau for X1/X2.

↓ page 57 There is now exactly one free node in the tableau, namely the root X1/X2
for which no interpolant is known. The remaining steps thus have the goal to
build an interpolant for the node X1/X2 from those of its first free successors.
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Step 3: Construction of T I and T J .
For this we only need to decide which successors of X1/X2 belong to T J .
These are all normal nodes where the second component is one of the following
sets:

Y1 := {¬[A∗]P P }
Y2 := {¬[A][A∗]P P }
Y3 := {¬P}

Step 4: Determining the necessary I(Y ).
All nodes of T J with the second component Y3 are end nodes of T J , and for
those we already have interpolants (p and [C]0). We thus have T (Y3)◁ = ∅
and I(Y3) = p ∨ [C]0.

Step 5: Construction of T K and I0.
As already mentioned it is completely unnecessary to explicitly determine the
formulas D(T (Y1)) and so on. The form of the tableau T K depends only on
the second components of the nodes of T J . To construct the tableau, which
consists of the second components of T K , it suffices to determine that Y1 is
its root and has the successors Y2 and Y3, that Y1 is obtained by applying
(At) to ¬[A][A∗]P P ∈ Y2 and that Y3 is an end node.

One will see that 1? occurs often as a canonical program in T K . To get an
interpolant that is not unnecessarily large, during the construction one may
replace each occurring program a; 1? and 1?; a by the program a and each
formula [¬P?]P , [1?]P , 1 ∧ P or P ∧ 1 by the formula P .

↓ page 58
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(Y1) • [A∗](p ∨ [C]0)

• (p ∨ [C]0)

A∗

• (p ∨ [C]0)

1?

(Y2) • (p ∨ [C]0)

1?

• (p ∨ [C]0)

1?

• (p ∨ [C]0)

¬(p ∨ [C]0)?

(Y3) • 1

1?

(Y3) • 1

1?

• 1

1?

• 1

1?

(Y1) • 1

A?

Figure 2: Untitled.

Result of the construction is thus, that I0 = [A∗](p ∨ [C]0) is an interpolant
for the formulas [(A; A)∗](p ∧ [A; (B ∪ C)]0) and [A∗](p ∨ [C]q). Due to
the aforementioned consideration not to construct an unnecessarily large
interpolant, we even have that I0 is test-free. However, this cannot always be
ensured.

Lemma 28. There are formulas P and Q with ⊨ P → Q such that no
interpolant for P and Q is test-free.

Proof. In BERMAN, PATERSON [2] it is shown that no test-free formula
R is equivalent to the formula P := ¬[(p?; A)∗; ¬p?; A; p?]0, i.e. for every
test-free formula R there is a Kripke model (g, ν, π) and an S ∈ g with
S ⊩ P ⇐⇒ S ⊩ ¬R. Thereby we cannot have both ⊨ P → R and ⊨ R → P .
But because we have ⊨ P → P , this means that no test-free formula is an
interpolant for P and P .

↓ page 59
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2.5 Open Questions
The result of Lemma 28 immediately motivates the following question:

• Is there for all test-free formulas P and Q with ⊨ P → Q a test-free
interpolant?

Note: Marcus Kracht shows in Tools and Techniques in Modal Mogic that
“if test–free PDL has interpolation, then full PDL also has interpolation”
(Theorem 10.6.2, page 495). This does not imply a positive answer to the
above question, as was wrongly claimed here in this translation before.

This question could be answered positively if it was shown that for all test-free
formulas P and Q with ⊨ P → Q there exists a closed tableau T for P/¬Q
such that for all nodes s2 and s3 in T K with s2 ◁ s3 and s3 not being an end
node we already have 1? = P(s2, s3).

It seems possible that by changing the critical rule the PDL-calculus can
be changed into a DPDL-calculus and by adding another rule into a CPDL-
calculus (both logics are also decidable [5]). In particular then the following
questions are interesting:

• Does the Interpolation Theorem also hold for DPDL and/or CPDL,
and can it be proven in the same way as for PDL using a suitable
tableau-calculus?
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↓ page 60
Appendix

List of all rules
The rules of the PDL-calculus:

X; ¬¬P(¬)
X; P

X; P ∧ Q(∧)
X; P ; Q

X; ¬(P ∧ Q)(¬∧)
X; ¬P | X; ¬Q

X; ¬[a ∪ b]P(¬∪)
X; ¬[a]P | X; ¬[b]P

X; ¬[Q?]P(¬?)
X; Q; ¬P

X; ¬[a; b]P(¬; )
X; ¬[a][b]P

X; [a ∪ b]P(∪)
X; [a]P ; [b]P

X; [Q?]P(?)
x; ¬Q | X; P

X; [a; b]P(; )
X; [a][b]P

X; ¬[a∗]P(¬n)
X; ¬P | X; ¬[a][a(n)]P

X; [a∗]P(n)
X; P ; [a][a(n)]P

X; ¬[a0] . . . [an]P(M+) X free
X; ¬[a0] . . . [an]P P

the loading rule,

X; ¬[a]P R

(M−)
X; ¬[a]P

the liberation rule,

X; ¬[A]P R

(At)
XA; ¬P R\P

the critical rule.

X; ¬[a ∪ b]P R

(¬∪)
X; ¬[a]P R | X; ¬[b]P R

X; ¬[a; b]P R

(¬; )
X; ¬[a][b]P R

X; ¬[a∗]P R

(¬n)
X; ¬P R\P | X; ¬[a][a(n)]P R

X; ¬[Q?]P R

(¬?)
X; Q; ¬P R\P

The rules for the construction of extended tableaus:

X; [a∗; b]P(∗; )
X; [b]P | X; [a][a∗; b]P

X; [1?; a]P(?; )
X; [a]P

X; Y(F−) Y free
X

X; [1?]P(1?)
X; P
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List of Symbols
p, q, . . . propositional variables
F0 the set of propositional variables
P, Q, . . . formulas
F the set of all formulas
X, Y, Z, . . . sets of formulas
A, B, . . . atomic programs
P0 the set of atomic programs
a, b, . . . programs
a→ program relation between states or sets of formulas

P the set of all programs
T a tableau
s, t, . . . nodes in tableaus
x, x1, x2, . . . functions mapping nodes to (pairs of) sets of formulas
◁ successor relation (Definition 6)
≤ reflexive transitive closure of ◁
< s ≤ t and s ̸= t

I, I1, I2, . . . interpolants
f the function mapping a(n) to a∗ etc.

Selected Vocabulary

Deutsch English meaning/example defined at
einfach simple Definition 9
markiert marked P P

belastet loaded contains a P P on page 19
frei free not loaded on page 19
n-Formel n-formula contains an a(n) Definition 10
normal normal not an n-formula Definition 10

Fortsetzung Continuation
der Gestalt of the form
Rechenwerk CPU
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