
A Proof from 1988 that PDL has Interpolation?

Manfred Borzechowski

EDV-Beratung Manfred Borzechowski
Berlin, Germany

Malvin Gattinger 1

University of Groningen
Groningen, The Netherlands

Abstract

Multiple arguments that Propositional Dynamic Logic has Craig Interpolation have
been published, but one has been revoked and the status of the others is unclear.
Here we summarise a proof attempt originally written by the first author in German
in 1988. We also make available the original text and an English translation.
The proof uses a tableau system with annotations. Interpolants are defined for par-
titioned nodes, going from leaves to the root with appropriate definitions for each
rule. To prevent infinite branches generated by the ∗ operator, additional marking
rules are used. In particular, nodes are also defined as end nodes when they have a
predecessor with the same set of formulas along a branch with the same marking.
We end with open questions about the proof idea and connections to more recent
related work on non-wellfounded proof systems.

Keywords: Propositional Dynamic Logic, Craig Interpolation, Tableau.

1 Introduction

Propositional Dynamic Logic (PDL) from [4] is a well-known modal logic which
is both expressive and well-behaved. PDL can express common programming
constructs such as conditionals and loops, but also has a small model property.

A logic has Craig Interpolation (CI) iff for any validity φ→ ψ there exists
a formula θ in the vocabulary that is used both in φ and in ψ such that φ→ θ
and θ → ψ are valid. The formula θ is then called an interpolant.

For PDL the vocabulary includes atomic propositions and atomic programs.
For example, [(A ∪B)

∗
](p ∧ q) → [(B;B)

∗
](q ∨ r) is valid in PDL and [B∗]q

is an interpolant for this validity. But whether such interpolants always exist,
i.e. whether PDL has CI, has been studied for more than four decades and is
still unknown. The key challenge is how to systematically find interpolants for

1 Corresponding author: malvin@w4eg.eu

mailto:malvin@w4eg.eu

2 A Proof from 1988 that PDL has Interpolation?

validities involving the star operator a∗ which denotes arbitrary finite iteration
of a program a. There have been at least the following three proof attempts:

• Daniel Leivant in [10] from 1981. This article presents a sequent calculus
including a rule for ∗ with infinitely many premises. This rule is then
replaced with a finitary rule and an intuitionistic variant of the system
is defined. Interpolation is then shown in the intuitionistic system using
Maeharas Method, defining interpolants for each node in a proof [12, p. 33].
Interpolants for ∗ are defined via fixed points of matrices of programs.

In [9] it is said that it was not “possible to verify the argument” and
claimed that the finitary rule is problematic. But the rule can be validated
using the finite model property of PDL, as argued in [5]. Still, other parts
of the argument, e.g. the translation to the intuitionistic system, seem
problematic. As far as we know, the status of this argument is currently
unknown [6].

• Manfred Borzechowski in [2] from 1988. The idea here is similar to [10],
but using a tableau system instead of a sequent calculus. This text is also
criticised in [9], but without any specific argument.

• Tomasz Kowalski in [7] from 2002. This algebraic proof was officially
retracted [8] in 2004, after a flaw was pointed out by Yde Venema.

The correctness of the first two texts is still the subject of discussions. In this
note we summarise the proof attempt from [2]. This diploma thesis was written
under the supervision of Wolfgang Rautenberg at FU Berlin, but not published.
Together with this summary we make available the original German text and
an English translation at https://malv.in/2020/borzechowski-pdl. Page
numbers refer to the German text, but are also shown in the translation.

We use the following notation: p, q, etc. are atomic propositional variables,
P,Q, etc. are formulas from P ::= p | ¬P | P∧Q | [a]P . Moreover, A,B, etc. are
atomic programs and a, b, etc. are programs from a ::= A | a; a | a∪a | a∗ | P?.
We do not repeat the semantics for PDL here — see the original page 6 or [4].

Section 2 provides an overview of the tableau system, Section 3 describes
the main idea how to define interpolants, and Section 4 lists open questions.

2 Tableaux for PDL

The system is defined below. We read rules top-down and use “. . . | . . . ” for
branches. The Boolean rules and those for PDL constructs besides ∗ are stan-
dard. The critical rule (At) for atomic programs uses XA := {P | [A]P ∈ X}
which corresponds to a transition to another state in a Kripke model.

To deal with the ∗ operator and to prevent infinitely long branches, the
system uses the following two non-standard features and extra condition 6.

Nodes with n-formulas. The (¬n) rule is essentially a diamond rule for the
∗ operator. It also replaces ∗ by the string ‘(n)’. Formulas with ‘(n)’ are n-
formulas, in contrast to normal formulas. An n-formula becomes normal again
by extra condition 1, which applies iff an atomic modality is reached.

https://malv.in/2020/borzechowski-pdl

Borzechowski and Gattinger 3

Markings. Formulas can be marked with other formulas as upper indices,
using the loading rule (M+). Nodes with marked formulas are called loaded, in
contrast to free. Markings can be removed or changed by (M−), (¬n) or (¬?).

Definition 2.1 A PDL tableau is a finite tree generated according to the fol-
lowing rules and in addition adhering to the seven extra conditions below.
The classical rules:

X;¬¬P
(¬)

X;P

X;P ∧Q
(∧)

X;P ;Q

X;¬(P ∧Q)
(¬∧)

X;¬P | X;¬Q
The local rules:

X;¬[a ∪ b]P
(¬∪)

X;¬[a]P | X;¬[b]P

X;¬[Q?]P
(¬?)

X;Q;¬P
X;¬[a; b]P

(¬;)
X;¬[a][b]P

X; [a ∪ b]P
(∪)

X; [a]P ; [b]P

X; [Q?]P
(?)

x;¬Q | X;P

X; [a; b]P
(;)

X; [a][b]P

X;¬[a∗]P
(¬n)

X;¬P | X;¬[a][a(n)]P

X; [a∗]P
(n)

X;P ; [a][a(n)]P

The PDL rules:

X;¬[a0] . . . [an]P
(M+) X free

X;¬[a0] . . . [an]PP
the loading rule,

X;¬[a]PR

(M−)
X;¬[a]P

the liberation rule,

X;¬[A]PR

(At)
XA;¬PR\P

the critical rule.

The marked rules (where . . .R\P indicates that R is removed iff R = P):

X;¬[a ∪ b]PR

(¬∪)
X;¬[a]PR | X;¬[b]PR

X;¬[a; b]PR

(¬;)
X;¬[a][b]PR

X;¬[a∗]PR

(¬n)
X;¬PR\P | X;¬[a][a(n)]PR

X;¬[Q?]PR

(¬?)
X;Q;¬PR\P

1. Instead of a node X;¬[A]P or X; [A]P with an n-formula P we always
obtain the node X;¬[A]f(P) or X; [A]f(P), respectively, where f(P) is
obtained by replacing (n) with ∗.

2. Instead of a node X; [a(n)]P we always obtain the node X.

3. A rule must be applied to an n-formula whenever it is possible.

4. No rule may be applied to a ¬[a(n)]-node.

5. To a node obtained using (M+) we may not apply (M−).

6. If a normal node t has a predecessor s with the same formulas and the
path s. . . t uses (At) and is loaded if s is loaded, then t is an end node.

7. Every loaded node that is not an end note by condition 6 has a successor.

4 A Proof from 1988 that PDL has Interpolation?

Claim 2.2 The system from Definition 2.1 is sound and complete for PDL.

The full completeness proof is contained in sections 1.8 to 1.10 of the original
text. The main idea is to construct a Kripke model from an open tableau.

3 Interpolation via Tableaux

We claim that the tableau system can be used to show interpolation. We first
define interpolants for partitioned sets of formulas. A partitioned set X is a
disjoint union of two subsets X1, X2. We write it as X = X1/X2.

Definition 3.1 A formula θ is an interpolant for a partitioned set X1/X2 iff
θ is in the vocabulary of that is used in both X1 and X2 and the two sets
X1 ∪ {¬θ} and {θ} ∪X2 are both inconsistent.

Corollary 3.2 A formula θ is an interpolant for a validity φ → ψ iff θ is an
interpolant for the partitioned set X1/X2 given by X1 = {φ} and X2 = {¬ψ}.

To find an interpolant for a validity φ → ψ we start a tableau with φ/¬ψ
as its root. This tableau is built as usual from the root to the leaves, applying
the rules to partitioned sets. Then we go in the opposite direction: starting
at the leaves, we define an interpolant for each node. Depending on the rule
which was applied, we use the interpolant(s) of the child node(s) to define a
new interpolant for the parent node. In addition, the interpolant might depend
on whether the active formula in a rule application is in the left or right side
of the partition. As mentioned above, this is similar to Maehara’s Method for
sequent calculi [12, p. 33]. We discuss two rules as examples here.

Interpolating (¬∪). Suppose we use (¬∪) in the right set. Given two inter-
polants θa and θb for X1/X2;¬[a]P and X1/X2;¬[b]P respectively, we define
the new interpolant θ := θa∧θb for the parent node X1/X2;¬[a∪b]P . Similarly,
on the left side we would use θ := θa ∨ θb for X1;¬[a ∪ b]P/X2.

Interpolating (At). Suppose we use (At) in the left set to go from a parent
node ¬[A]φ;Y1/Y2 to a child node ¬φ; (Y1)A/(Y2)A. Suppose θA is an inter-
polant for the child node. Then ¬φ; (Y1)A;¬θA and (Y2)A; θA are inconsistent.
We now want an interpolant for the parent, i.e. a θ such that ¬[A]φ;Y1;¬θ
and Y2; θ are inconsistent. A solution is to set θ := 〈A〉θA, unless Y2 is empty,
in which case we are not allowed to use A, so we ignore θA and let θ := ⊥.
Similarly, if (At) is applied in the right set we use θ := [A]θA, unless Z1 is
empty, in which case we let θ := >.

We refer to the original text for two examples. A closed tableau for the set
{¬[(A ∪ p?)

∗
]q, [A∗]q} is given on page 29 and an interpolant for [(A;A)

∗
](p ∧

[A; (B ∪ C)]0)→ [A∗](p ∨ [C]q) is computed in Section 2.4: [A∗](p ∨ [C]0).

4 Open Questions

The previous two sections provide only a high-level overview of the argument.
To verify it completely we will further study the following two main questions:

• How exactly are the existence lemma and completeness of the system
shown? In particular, what is the role of first free normal successor nodes?

Borzechowski and Gattinger 5

• How are interpolants defined for end nodes due to condition 6? The orig-
inal text uses the extra tableaux T I and T J for this, what is their role?

If the proof can be verified, there are of course further questions:

• Can we simplify the proof to only consider test-free PDL?

• How does the system compare to recent work on infinitary and non-
wellfounded systems, such as [1] for µ-calculus and [3] for PDL?

• Can interpolation be efficiently implemented into an automated prover?
We have started to implement parts of the given system, similar to how
the star-free fragment of [10] was implemented by [11].

To conclude, we hope that this summary will help to further scrutinise the
proof and encourage the interested participant of AiML 2020 to contact us.

References

[1] Afshari, B., G. Jäger and G. E. Leigh, An infinitary treatment of full mu-calculus, in:
R. Iemhoff, M. Moortgat and R. de Queiroz, editors, Workshop on Logic, Language,
Information, and Computation (WoLLIC), 2019, pp. 17–34.
URL https://doi.org/10.1007/978-3-662-59533-6_2

[2] Borzechowski, M., Tableau-Kalkül für PDL und Interpolation (1988), Diplomarbeit.
URL https://malv.in/2020/borzechowski-pdl/

[3] Docherty, S. and R. N. S. Rowe, A non-wellfounded, labelled proof system for
propositional dynamic logic, in: S. Cerrito and A. Popescu, editors, Automated Reasoning
with Analytic Tableaux and Related Methods (TABLEAUX 2019), Lecture Notes in
Computer Science 11714, 2019, pp. 335–352.
URL http://arxiv.org/abs/1905.06143

[4] Fischer, M. J. and R. E. Ladner, Propositional dynamic logic of regular programs, Journal
of Computer and System Sciences 18 (1979), pp. 194–211.
URL https://doi.org/10.1016/0022-0000(79)90046-1

[5] Gattinger, M., Craig Interpolation of PDL – A report on the proof by Daniel Leivant
(1981) (2014).
URL https://w4eg.de/malvin/illc/pdl.pdf

[6] Gattinger, M. and Y. Venema, Interpolation for PDL: an open problem?, in: Circularity
in Syntax and Semantics, 2019, p. 26, talk and abstract only.
URL http://www.cse.chalmers.se/~bahafs/CiSS2019/CiSS2019BoA.pdf

[7] Kowalski, T., PDL has interpolation, Journal of Symbolic Logic 67 (2002), pp. 933–946.
URL https://doi.org/10.2178/jsl/1190150141

[8] Kowalski, T., Retraction note for “PDL has interpolation”, Journal of Symbolic Logic
69 (2004), pp. 935–936.
URL https://doi.org/10.2178/jsl/1096901777

[9] Kracht, M., “Tools and Techniques in Modal Logic,” 1999.
URL https://wwwhomes.uni-bielefeld.de/mkracht/html/tools/book.pdf

[10] Leivant, D., Proof theoretic methodology for propositional dynamic logic, in: J. Dı́az
and I. Ramos, editors, Formalization of Programming Concepts (ICFPC 1981), Lecture
Notes in Computer Science 107, 1981, p. 356–373.
URL https://doi.org/10.1007/3-540-10699-5_111

[11] Perin, F., Implementing Maehara’s method for star-free Propositional Dynamic Logic
(2019), Bachelor’s Thesis, University of Groningen.
URL https://fse.studenttheses.ub.rug.nl/20770/

[12] Takeuti, G., “Proof Theory,” Studies in logic and the foundations of mathematics 81,
North-Holland, 1975.

https://doi.org/10.1007/978-3-662-59533-6_2
https://malv.in/2020/borzechowski-pdl/
http://arxiv.org/abs/1905.06143
https://doi.org/10.1016/0022-0000(79)90046-1
https://w4eg.de/malvin/illc/pdl.pdf
http://www.cse.chalmers.se/~bahafs/CiSS2019/CiSS2019BoA.pdf
https://doi.org/10.2178/jsl/1190150141
https://doi.org/10.2178/jsl/1096901777
https://wwwhomes.uni-bielefeld.de/mkracht/html/tools/book.pdf
https://doi.org/10.1007/3-540-10699-5_111
https://fse.studenttheses.ub.rug.nl/20770/

	Introduction
	Tableaux for PDL
	Interpolation via Tableaux
	Open Questions
	References

