
Functional Programming for Logicians — Lecture 5
(Symbolic) Model Checking for (Dynamic) Epistemic Logic(s)

Malvin Gattinger

8 June 2018

module L5 where

(!) :: Eq a => [(a,b)] -> a -> b
(!) v x = let (Just y) = lookup x v in y

(?) :: Eq a => [[a]] -> a -> [a]
(?) lls x = head (filter (x `elem`) lls)

DEL

Muddy Children

An early version of this puzzle are the three ladies on a train:
“Three ladies, A, B, C in a railway carriage all have dirty faces and
are all laughing. It suddenly flashes on A: why doesn’t B realize C is
laughing at her? — Heavens! I must be laughable. (Formally: if I, A,
am not laughable, B will be arguing: if I, B, am not laughable, C has
nothing to laugh at. Since B does not so argue, I, A, must be
laughable.)” (Littlewood 1953)

Isomorphic to this is the story about muddy children:
“Imagine n children playing together. The mother of these children
has told them that if they get dirty there will be severe consequences.
So, of course, each child wants to keep clean, but each would love to
see the others get dirty. Now it happens during their play that some
of the children, say k of them, get mud on their foreheads. Each can
see the mud on others but not on his own forehead. So, of course, no
one says a thing. Along comes the father, who says, “At least one of
you has mud on your forehead,” thus expressing a fact known to each
of them before he spoke (if k > 1). The father then asks the
following question, over and over: “Does any of you know whether
you have mud on your own forehead?” Assuming that all the children
are perceptive, intelligent, truthful, and that they answer
simultaneously, what will happen?” (Fagin et. al 1995)

Epistemic Logic
Syntax

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ

Kripke Models

M = (W ,Ri ,Val) where
I W set of worlds
I Ri ⊆ W ×W indistinguishability relation
I Val : W → P(P) valuation function

Semantics

M,w |= Kiϕ iff wRiv impliesM, v |= ϕ

Dynamic Epistemic Logic: Action Models
Action Models

A = (A,R , pre, post) where
I A set of atomic events
I Ri ⊆ A× A indistinguishability relation
I pre : A→ L precondition function
I post : A→ P → L postcondition function

Product Update

M×A := (W new,Rnew
i ,Valnew) where

I W new := {(w , a) ∈ W × A | M,w � pre(a)}
I Rnew

i := {((w , a), (v , b)) | Riwv and Riab}
I Valnew((w , a)) := {p ∈ V | M,w � posta(p)}

M, v � [A, a]ϕ iff M,w � pre(a) implies (M×A, (w , a)) � ϕ
(Baltag et al 1998) and (van Benthem et al 2006)

Dynamic Epistemic Logic: Action Models
Action Models

A = (A,R , pre, post) where
I A set of atomic events
I Ri ⊆ A× A indistinguishability relation
I pre : A→ L precondition function
I post : A→ P → L postcondition function

Product Update

M×A := (W new,Rnew
i ,Valnew) where

I W new := {(w , a) ∈ W × A | M,w � pre(a)}
I Rnew

i := {((w , a), (v , b)) | Riwv and Riab}
I Valnew((w , a)) := {p ∈ V | M,w � posta(p)}

M, v � [A, a]ϕ iff M,w � pre(a) implies (M×A, (w , a)) � ϕ
(Baltag et al 1998) and (van Benthem et al 2006)

DEL Example: Coin Flip hidden from a

w
pa,b ×

a1
?>

p := ⊥

a2
?>

p := >

a,b

a,b

a =

(w , a1)
¬p

(w , a2)
p

a,b

a,b

a

M,w � Kap ∧ Kbp ∧ [A, a1](Kb¬p ∧ ¬Ka¬p)

Two Perspectives: Dynamic / Temporal

I Dynamic Epistemic Logic: events are model changing operations

I Temporal Logics: time is a relation inside the model

DEL Applications

Fun puzzles:
I Russian Cards
I Muddy Children
I Sum and Product
I Drinking Logicians
I The Hardes Logic Puzzle Ever (Knights & Knaves)

But also:
I Epistemic Planning
I Protocol Verification
I Theory of Mind: Sally and Anne

Simple Explicit Model Checking

Model Checking – The Task

Given a model and a formula, does it hold in the model?

M,w |= ϕ or M,w 6|= ϕ

???

In the case of DEL, ϕ might contain dynamic operators!

Agents and Formulas

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ

type Prop = Int

type Ag = String

data Form = P Prop | Neg Form | Con Form Form | K Ag Form
deriving (Eq,Ord,Show)

dis :: Form -> Form -> Form
dis f g = Neg (Con (Neg f) (Neg g))

Models

M = (W ,R ,V)

type World = Int

type Relations = [(Ag, [[World]])]

type Valuation = [(World, [Prop])]

data Model = Mo { worlds :: [World]
, rel :: Relations
, val :: Valuation }

deriving (Eq,Ord,Show)

Note: We assume equivalence relations and encode them as [[World]].

Semantics

M,w � p :⇐⇒ p ∈ V (w)
M,w � ¬ϕ :⇐⇒ notM,w � ϕ
M,w � ϕ ∧ ψ :⇐⇒ M,w � ϕ andM,w � ψ
M,w � Kiϕ :⇐⇒ M,w ′ � ϕ for all w ′ such that Riww ′

isTrue :: (Model,World) -> Form -> Bool
isTrue (m,w) (P p) = p `elem` (val m ! w)
isTrue (m,w) (Neg f) = not (isTrue (m,w) f)
isTrue (m,w) (Con f g) = isTrue (m,w) f && isTrue (m,w) g
isTrue (m,w) (K i f) =

and [isTrue (m,w') f | w' <- (rel m ! i) ? w]

Muddy Children in Haskell
8 worlds, 3 agents, 3 atomic propositions.

muddy :: Model
muddy = Mo

[0,1,2,3,4,5,6,7]
[("1",[[0,4],[2,6],[3,7],[1,5]])
,("2",[[0,2],[4,6],[5,7],[1,3]])
,("3",[[0,1],[4,5],[6,7],[2,3]])]
[(0,[])
,(1,[3])
,(2,[2])
,(3,[2, 3])
,(4,[1])
,(5,[1, 3])
,(6,[1, 2])
,(7,[1, 2, 3])]

L5> isTrue (muddy,6) (Con (P 1) (P 2))
True
L5> isTrue (muddy,6) (K "1" (P 1))
False
L5> isTrue (muddy,6) (K "1" (P 2))
True
L5> isTrue (muddy,6) (K "3" (Con (P 1) (P 2)))
True
L5> isTrue (muddy,6) (K "3" (Neg (K "2" (P 2))))
True

p1 ∨ (p2 ∨ p3)

father :: Form
father = dis (P 1) (dis (P 2) (P 3))

λ> map (\w->(w,isTrue (muddy, w) father)) (worlds muddy)
[(0,False),(1,True),(2,True),(3,True),(4,True),(5,True),(6,True),(7,True)]

Making Announcements

announce :: Model -> Form -> Model
announce oldModel f = Mo newWorlds newRel newVal where

newWorlds = undefined
newRel = undefined
newVal = undefined

muddy2 :: Model
muddy2 = announce muddy father

Limits of explicit model checking
I The set of possible worlds is explicitly constructed.
I Epistemic (equivalence) relations are spelled out.

⇒ Everything has to fit in memory. For large models (1000 worlds) it gets
slow. Runtime in seconds for n Muddy Children, needing 2n worlds:

n DEMO-S5
3 0.000
6 0.012
8 0.273
10 8.424
11 46.530
12 228.055
13 1215.474

Symbolic Model Checking for DEL

Symbolic Model Checking: General Idea

1. Can we represent models in a more compact way?
2. . . . such that we can still interpret all formulas?

There exist efficient methods for many temporal logics like LTL and CTL
[@Clarke1999] and also epistemic logics [@Su07:MCTLKO].

Today: How to do it for DEL.

1. RepresentM = (W ,Ri ,V) symbolically: F = (V , θ,Oi).
2. Translate DEL to equivalent boolean formulas.
3. Use BDDs to speed up boolean operations.

Symbolic Model Checking: General Idea

1. Can we represent models in a more compact way?
2. . . . such that we can still interpret all formulas?

There exist efficient methods for many temporal logics like LTL and CTL
[@Clarke1999] and also epistemic logics [@Su07:MCTLKO].

Today: How to do it for DEL.

1. RepresentM = (W ,Ri ,V) symbolically: F = (V , θ,Oi).
2. Translate DEL to equivalent boolean formulas.
3. Use BDDs to speed up boolean operations.

Symbolic Model Checking: General Idea

1. Can we represent models in a more compact way?
2. . . . such that we can still interpret all formulas?

There exist efficient methods for many temporal logics like LTL and CTL
[@Clarke1999] and also epistemic logics [@Su07:MCTLKO].

Today: How to do it for DEL.

1. RepresentM = (W ,Ri ,V) symbolically: F = (V , θ,Oi).
2. Translate DEL to equivalent boolean formulas.
3. Use BDDs to speed up boolean operations.

Symbolic Model Checking: General Idea
Instead of listing all possible worlds explicitly . . .

KrM
[0,1,2,3]
[("Alice",[[0,1],[2,3]])
, ("Bob" ,[[0,2],[1,3]])]
[(0,[(P 1,False),(P 2,False)])
, (1,[(P 1,False),(P 2,True)])
, (2,[(P 1,True),(P 2,False)])
, (3,[(P 1,True),(P 2,True)])]

. . . we list atomic propositions and who can observe them:

KnS [P 1,P 2] (boolBddOf Top) [("Alice",[P 1]), ("Bob",[P 2])]

Symbolic Model Checking for DEL
Knowledge Structures

F = (V , θ,O1, · · · ,On)

V Vocabulary a set of propositional variables
θ State Law a boolean formula over V
Oi ⊆ V Observables propositions observable by i

The set of states is {s ⊆ V | s � θ}.

Call (F , s) a scenario.

The world is everything that is the case.
Die Welt ist alles, was der Fall ist.

Ludwig Wittgenstein

Symbolic Model Checking for DEL
Knowledge Structures

F = (V , θ,O1, · · · ,On)

V Vocabulary a set of propositional variables
θ State Law a boolean formula over V
Oi ⊆ V Observables propositions observable by i

The set of states is {s ⊆ V | s � θ}.

Call (F , s) a scenario.

The world is everything that is the case.
Die Welt ist alles, was der Fall ist.

Ludwig Wittgenstein

New Semantics for DEL on Knowledge Structures
Easy:

I (F , s) |= p iff p ∈ s.
I (F , s) |= ¬ϕ iff not (F , s) |= ϕ
I (F , s) |= ϕ ∧ ψ iff (F , s) |= ϕ and (F , s) |= ψ

I know something iff it follows from my observations:
I (F , s) |= Kiϕ iff for all s ′ � θ, if s ∩ Oi = s ′ ∩ Oi , then (F , s ′) |= ϕ.

Updates restrict the set of states:
I (F , s) |= [!ψ]ϕ iff (F , s) |= ψ implies (Fψ, s) |= ϕ where ‖ψ‖F will be
defined later and

Fψ := (V , θ ∧ ‖ψ‖F ,O1, · · · ,On)

Knowledge Structures

Example
F = (V = {p}, θ = >,O1 = {p},O2 = ∅)

States: ∅, {p}

Some facts:
I F ,∅ � ¬p ∧ K1¬p ∧ ¬K2¬p
I F , {p} � p ∧ K1p ∧ ¬K2p
I F , {p} � [!p]K2p
because Fp = (V = {p}, θ = p,O1 = {p},O2 = ∅)

Implementation of Knowledge Structures and Semantics
data KnowStruct = KnS [Prp] Bdd [(Agent,[Prp])]
type KnState = [Prp]
type Scenario = (KnowStruct,KnState)

eval :: Scenario -> Form -> Bool
eval (_,s) (PrpF p) = p `elem` s
eval (kns,s) (Neg form) = not (eval (kns,s) form)
eval (kns,s) (Conj forms) = all (eval (kns,s)) forms
eval scn (Impl f g) =

if eval scn f then eval scn g else True
eval (kns@(KnS _ _ obs),s) (K i form) =

all (\s' -> eval (kns,s') form) theres where
oi = apply obs i
theres = filter sameO (statesOf kns)
sameO s' = (restrict s' oi) `seteq` (restrict s oi)

From Knowledge Structures to Kripke Models
Theorem: For every knowledge structure F there is an equivalent S5 Kripke
ModelM such that F , s � ϕ iffM,ws � ϕ.

Proof.
Let W := {s ⊆ V | s � θ}, V = id and Rist iff s ∩ Oi = t ∩ Oi .

Example: The knowledge structure

F = (V = {p, q}, θ = p ∨ q,Oa = {p},Ob = {q})

is equivalent to this Kripke model:

p

p, qq

a

b

Implementation: KNS → Kripke
Let W := {s ⊆ V | s � θ}, V = id and Rist iff s ∩ Oi = t ∩ Oi .

knsToKripkeWithG :: KnowScene -> (PointedModelS5, StateMap)
knsToKripkeWithG (kns@(KnS ps _ obs),curs) =

if curs `elem` statesOf kns
then ((KrMS5 worlds rel val, cur) , g)
else error "knsToKripke failed: Invalid state."

where
lav = zip (statesOf kns) [0..(length (statesOf kns)-1)]
val = map (\ (s,n) -> (n,state2kripkeass s)) lav where

state2kripkeass s = map (\p -> (p, p `elem` s)) ps
rel = [(i,rfor i) | i <- map fst obs]
rfor i = map (map snd) (groupBy (\ (x,_) (y,_) -> x==y) (sort pairs)) where

pairs = map (\s -> (restrictState s (obs ! i), lav ! s)) (statesOf kns)
worlds = map snd lav
cur = lav ! curs
g w = statesOf kns !! w

From Kripke Models to Knowledge Structures

This direction is non-trivial.

Theorem: For every S5 Kripke ModelM there is an equivalent knowledge
structure F such thatM,w � ϕ iff F , sw � ϕ.

Proof. Problematic cases look like this:

2

1
p

0
p

Alice

Alice

Alice

Bob

From Kripke Models to Knowledge Structures

This direction is non-trivial.

Theorem: For every S5 Kripke ModelM there is an equivalent knowledge
structure F such thatM,w � ϕ iff F , sw � ϕ.

Proof. Problematic cases look like this:

2

1
p

0
p

Alice

Alice

Alice

Bob

From Kripke Models to Knowledge Structures

Proof. (continued)

2

1
p

0
p

Alice

Alice

Alice

Bob

Trick: Add propositions to distinguish all equivalence classes.

From Kripke Models to Knowledge Structures
Proof. (continued)

2

1
p

0
p

Alice

Alice

Alice

Bob

is equivalent to

(V = {p, p2}, θ = p2 → p, OAlice = ∅, OBob = {p2})

actual state: {p, p2}

�

Implementation: Kripke → KNS
kripkeToKnsWithG :: PointedModelS5 -> (KnowScene, StateMap)
kripkeToKnsWithG (KrMS5 worlds rel val, cur) = ((KnS ps law obs, curs), g) where

v = map fst (val ! cur)
ags = map fst rel
newpstart = fromEnum (freshp v) -- start counting new propositions here
amount i = ceiling (logBase 2 (fromIntegral (length (rel ! i))) :: Float) -- = |O_i|
newpstep = maximum [amount i | i <- ags]
newps i = map (\k -> P (newpstart + (newpstep * inum) +k)) [0..(amount i - 1)] -- O_i

where (Just inum) = elemIndex i (map fst rel)
copyrel i = zip (rel ! i) (powerset (newps i)) -- label equiv.classes with P(O_i)
gag i w = snd $ head $ filter (\ (ws,_) -> elem w ws) (copyrel i)
g w = filter (apply (val ! w)) v ++ concat [gag i w | i <- ags]
ps = v ++ concat [newps i | i <- ags]
law = disSet [booloutof (g w) ps | w <- worlds]
obs = [(i,newps i) | i<- ags]
curs = sort (g cur)

So what, Kripke Models and knowledge structures are the same?!

Everything is boolean!
Definition: Fix a knowledge structure F = (V , θ,O1, · · · ,On).
We translate everything to boolean formulas ‖ · ‖F :

p p
¬ϕ ¬‖ϕ‖F
ϕ1 ∧ ϕ2 ‖ϕ1‖F ∧ ‖ϕ2‖F
Kiϕ ∀(V \ Oi)(θ → ‖ϕ‖F)
[!ϕ]ψ ‖ϕ‖F → ‖ψ‖Fϕ

Theorem: For all scenarios (F , s) and all formulas ϕ:

F , s � ϕ ⇐⇒ s � ‖ϕ‖F

Why care about boolean formulas?

Binary Decision Diagrams

Truth Tables are dead, long live trees
Definition: A Binary Decision Diagram for the variables V is a directed
acyclic graph where non-terminal nodes are from V with two outgoing edges
and terminal nodes are > or ⊥.

I All boolean functions can be represented like this.
I Ordered: Variables in a given order, maximally once.
I Reduced: No redundancy, identify isomorphic subgraphs.
I By “BDD” we always mean an ordered and reduced BDD.

1 10

3

2

3 3

111

2

1

0

3

0

1

2

3

10

Read the classic Bryant 1986 for more details!

BDD Magic
How long do you need to compare these two formulas?

p3 ∨ ¬(p1 → p2) ??? ¬(p1 ∧ ¬p2)→ p3

Here are is their BDDs:
1

2

3

10

BDD Magic
How long do you need to compare these two formulas?

p3 ∨ ¬(p1 → p2) ??? ¬(p1 ∧ ¬p2)→ p3

Here are is their BDDs:
1

2

3

10

BDD Magic

This was not an accident, BDDs are canonical.

Theorem:
ϕ ≡ ψ ⇒ BDD(ϕ) = BDD(ψ)

Equivalence checks are free and we have fast algorithms to compute
BDD(¬ϕ), BDD(ϕ ∧ ψ), BDD(ϕ→ ψ) etc.

NooBDD: A very naive BDD Implementation

See https://github.com/m4lvin/NooBDD.

data Bdd = Top | Bot | Node Int Bdd Bdd

https://github.com/m4lvin/NooBDD

(Has)CacBDD

If you worry about speed then use C++, they say. Hence to speed up boolean
operations, we use CacBDD [@Su13:CacBDD] via binding, see
https://github.com/m4lvin/HasCacBDD.

Alternatively, SMCDEL can also use CUDD.

https://github.com/m4lvin/HasCacBDD

Implementation: Translation to BDDs
import Data.HasCacBDD -- (var,neg,conSet,forallSet,...)

bddOf :: KnowStruct -> Form -> Bdd
bddOf _ (PrpF (P n)) = var n
bddOf kns (Neg form) = neg $ bddOf kns form
bddOf kns (Conj forms) = conSet $ map (bddOf kns) forms
bddOf kns (Disj forms) = disSet $ map (bddOf kns) forms
bddOf kns (Impl f g) = imp (bddOf kns f) (bddOf kns g)
bddOf kns@(KnS allprops lawbdd obs) (K i form) =

forallSet otherps (imp lawbdd (bddOf kns form)) where
otherps = map (\(P n) -> n) $ allprops \\ apply obs i

bddOf kns (PubAnnounce form1 form2) =
imp (bddOf kns form1) newform2 where

newform2 = bddOf (pubAnnounce kns form1) form2

Putting it all together
To model check whether F , s � ϕ . . .

1. Translate ϕ to a BDD with respect to F .
2. Restrict the BDD to s.
3. Return the resulting constant.

evalViaBdd :: Scenario -> Form -> Bool
evalViaBdd (kns@(KnS allprops _ _),s) f = bool where

b = restrictSet (bddOf kns f) facts
facts = [(n, P n `elem` s) | (P n) <- allprops]
bool | b == top = True

| b == bot = False
| otherwise = error ("BDD leftover.")

Examples and Results

Symbolic Muddy Children

Initial knowledge structure:

F = ({p1, p2, p3},>,O1 = {p2, p3},O2 = {p1, p3},O3 = {p1, p2})

After the third announcement the children know their own state:

ϕ = [!(p1 ∨ p2 ∨ p3)][!
∧
i
¬(Kipi ∨ Ki¬pi)][!

∧
i
¬(Kipi ∨ Ki¬pi)](

∧
i

(Kipi))

Intermediate BDDs for the state law in muddy children:

1

>

2

⊥

3

2

> ⊥

1

3

2

1

>

2

⊥

3

Muddy Children
Runtime in seconds:

n DEMO-S5 SMCDEL
3 0.000 0.000
6 0.012 0.002
8 0.273 0.004
10 8.424 0.008
11 46.530 0.011
12 228.055 0.015
13 1215.474 0.019
20 0.078
40 0.777
60 2.563
80 6.905

Russian Cards

A puzzle:
Seven cards, enumerated from 1 to 7, are distributed between Alice,
Bob and Carol. Alice and Bob both receive three cards and Carol one
card. It is common knowledge which cards exist and how many cards
each agent has. Everyone knows their own but not the others’ cards.

The goal of Alice and Bob now is to learn each others cards without
Carol learning their cards.

They are only allowed to communicate via public announcements.

Alice: “My set of cards is 123, 145, 167, 247 or 356.”

Bob: “Crow has card 7.”

There are 102 such “safe announcements” which [@vDitm2003RC] had to find
and check by hand.

With symbolic model checking this takes 4 seconds.

Alice: “My set of cards is 123, 145, 167, 247 or 356.”

Bob: “Crow has card 7.”

There are 102 such “safe announcements” which [@vDitm2003RC] had to find
and check by hand.

With symbolic model checking this takes 4 seconds.

Sum and Product
The puzzle from Freudenthal 1969 (translated from Dutch):

A says to S and P: I chose two numbers x , y such that 1 < x < y
and x + y ≤ 100. I will tell s = x + y to S alone, and p = xy to P
alone. These messages will stay secret. But you should try to
calculate the pair (x , y).

He does as announced. Now follows this conversation:

1. P says: I do not know it.
2. S says: I knew that.
3. P says: Now I know it.
4. S says: No I also know it.

Determine the pair (x , y).

Sum and Product: Encoding numbers
pairs :: [(Int, Int)] -- possible pairs 1<x<y, x+y<=100
pairs = [(x,y) | x<-[2..100], y<-[2..100], x<y, x+y<=100]

xProps, yProps, sProps, pProps :: [Prp]
xProps = [(P 1)..(P 7)] -- 7 propositions to label [2..100]
yProps = [(P 8)..(P 14)]
sProps = [(P 15)..(P 21)]
pProps = [(P 22)..(P (21+amount))]

where amount = ceiling (logBase 2 (50*50) :: Double)

xIs, yIs, sIs, pIs :: Int -> Form
xIs n = booloutofForm (powerset xProps !! n) xProps
yIs n = booloutofForm (powerset yProps !! n) yProps
sIs n = booloutofForm (powerset sProps !! n) sProps
pIs n = booloutofForm (powerset pProps !! n) pProps

xyAre :: (Int,Int) -> Form
xyAre (n,m) = Conj [xIs n, yIs m]

BDDs don’t like products:

Benchmark bench-sumandproduct: RUNNING...
Benchmarking the complete run.
*** Running DEMO_S5 ***
Mo [(4,13)] [Ag 0,Ag 1] [] [(Ag 0,[[(4,13)]])

,(Ag 1,[[(4,13)]])] [(4,13)]
This took 0.964665s seconds.

*** Running SMCDEL ***
x = 4, y = 13, x+y = 17 and x*y = 52
This took 1.632393s seconds.

Dining Cryptographers

Suppose Fenrong, Yanjing and Jan had a very fancy diner. The waiter
comes in and tells them that it has already been paid.

They want to find out if it was one of them or Tsinghua University.
However, if one of them paid, they also respect the wish of that
person to stay anonymous. That is, they do not want to know who of
them paid if it was one of them.

This puzzle was solved by David Chaum in his “Dining Cryptographers”
protocol.

SMCDEL can check the case with 160 agents (and a lot of coins) in 10
seconds.

Dining Cryptographers

Suppose Fenrong, Yanjing and Jan had a very fancy diner. The waiter
comes in and tells them that it has already been paid.

They want to find out if it was one of them or Tsinghua University.
However, if one of them paid, they also respect the wish of that
person to stay anonymous. That is, they do not want to know who of
them paid if it was one of them.

This puzzle was solved by David Chaum in his “Dining Cryptographers”
protocol.

SMCDEL can check the case with 160 agents (and a lot of coins) in 10
seconds.

Digression: Comparing DEL and ETL

Scenarios and protocols like the Dining Dryptographers can be formalized in
temporal logics (LTL,CTLK,. . .) and in DEL.

With SMCDEL we can now also check the DEL variant quickly.

This motivates many questions:
I When are two formalizations of the same protocol equivalent?
[@vB2009merging, @ditmarsch2013connecting]

I Which formalizations are more intuitive?
I What is faster

I for your computer to model check?
I for you to write down formulas?

Howto use SMCDEL

The easy way: SMCDEL web
Link: https://w4eg.de/malvin/illc/smcdelweb

Input: A knowledge structure and formulas to be checked.

VARS 1,2,3
LAW Top
OBS alice: 2,3

bob: 1,3
carol: 1,2

VALID? ~(alice knows whether 1)
WHERE? ~(1|2|3)
VALID? [! (1|2|3)]

[! ((~ (alice knows whether 1)) & (~ (bob knows whether 2)) & (~ (carol knows whether 3)))]
[! ((~ (alice knows whether 1)) & (~ (bob knows whether 2)) & (~ (carol knows whether 3)))]
(1 & 2 & 3)

https://w4eg.de/malvin/illc/smcdelweb

The hard way: import SMCDEL

This allows you to define abbreviations and generat larger models
automatically without writing them by hand.

Transformers

Action Models and Product Update
Action Model: A = (A, Si , pre)

A set of actions
Si ⊆ A× A indistinguishability relation
pre : A→ L preconditions

Product Update:
M⊗A := (W ′,R ′,V ′) where

I W ′ = {(w , a) ∈ W × A | M,w � pre(a)}
I R ′

i (s, a)(t, b) iff Rist and Siab
I V ′(w , a) = V (w) no factual change

Semantics:
M,w � [A, a]ϕ iffM,w � pre(a) impliesM⊗A, (w , a) � ϕ

Knowledge Transformers
Knowledge Transformer: X = (V+, µ,O+

1 , . . . ,O+
n)

V+ New Vocabulary new propositional variables
µ Event Law a formula over V ∪ V+

O+
i ⊆ V+ Observables what can i observe?

Transformation: Given F = (V , θ,O1, . . . ,On) and
X = (V+, µ,O+

1 , . . . ,O+
n), define

F ⊗ X := (V ∪ V+, θ ∧ ||µ||F ,O1 ∪ O+
1 , . . . ,On ∪ O+

n)

Event: (X , x) where x ⊆ V+

Knowledge Transformers
Examples:

I public announcement: X = (∅, ϕ,∅,∅)
I (almost) private announcement of ϕ to a:

X = ({p}, p → ϕ,Oa = {p},Ob = ∅)

ϕ >
b

Theorem: For every S5 action model A there is a transformer X (and vice
versa) such that for every equivalentM and F :

M⊗A, (w , a) � ϕ ⇐⇒ F ⊗X , s ∪ x � ϕ

Non-S5

Belief as KD45

A crucial difference between Knowledge and Belief is Truth.

We assume Kϕ→ ϕ but in general not Bϕ→ ϕ.

⇒ Kripke Models for Belief are not reflexive.

Arbitrary Relations with BDDs
We can replace Oi with a BDD Ωi to describe any relation.
Trick: Use copy-propositions to describe reachable worlds.

[@GoroRyan02:BelRevBDD]

p1

p2

p1, p2

p1

p′
1

p2

p′
2

> ⊥

Non-S5 Knowledge Structures

For every agent we replace Oi with a BDD Ωi .

Now translate �iϕ to:

∀~p′(θ′ → (Ωi(~p, ~p′)→ (‖ϕ‖F)′))

Type Safe BDD manipulation

Note that ϕ and ϕ′ etc. are formulas in different languages, but we can use
the same type Form and Bdd in Haskell for it.

This will lead to disaster.

The following type RelBDD is in fact just a newtype of Bdd. Tags (aka labels)
from the module Data.Tagged can be used to distinguish objects of the same
type which should not be combined or mixed. Making these differences
explicit at the type level can rule out certain mistakes already at compile time
which otherwise might only be discovered at run time or not at all.

Type Safe BDD manipulation

Note that ϕ and ϕ′ etc. are formulas in different languages, but we can use
the same type Form and Bdd in Haskell for it.

This will lead to disaster.

The following type RelBDD is in fact just a newtype of Bdd. Tags (aka labels)
from the module Data.Tagged can be used to distinguish objects of the same
type which should not be combined or mixed. Making these differences
explicit at the type level can rule out certain mistakes already at compile time
which otherwise might only be discovered at run time or not at all.

The use case here is to distinguish BDDs for formulas over different
vocabularies, i.e.~sets of atomic propositions. For example, the BDD of p1 in
the standard vocabulary V uses the variable 1, but in the vocabulary of
V ∪ V ′ the proposition p1 is mapped to variable 3 while p′

1 is mapped to 4.
This is implemented in the mv and cp functions above which we are now
going to lift to BDDs.

If RelBDD and Bdd were synonyms (as it was the case in a previous version of
this file) then it would be up to us to ensure that BDDs meant for different
vocabularies would not be combined. Taking the conjunction of the BDD of p
in V and the BDD of p2 in V ∪ V ′ just makes no sense — one BDD first
needs to be translated to the vocabulary of the other — but as long as the
types match Haskell would happily generate the chaotic conjunction.

To catch these problems at compile time we now distinguish Bdd and
RelBDD@. In principle this could be done with a simple newtype, but looking
ahead we will need even more different vocabularies (for factual change and
symbolic bisimulations). It would become tedious to write the same instances
of Functor, Applicative and Monad each time we add a new vocabulary.
Fortunately, Data.Tagged already provides us with an instance of Functor for
Tagged t for any type t.

Also note that Dubbel is an empty type, isomorphic to ().

data Dubbel
type RelBDD = Tagged Dubbel Bdd

totalRelBdd, emptyRelBdd :: RelBDD
totalRelBdd = pure $ boolBddOf Top
emptyRelBdd = pure $ boolBddOf Bot

allsamebdd :: [Prp] -> RelBDD
allsamebdd ps = pure $ conSet [boolBddOf $ PrpF p `Equi` PrpF p' | (p,p') <- zip (mv ps) (cp ps)]

class TagBdd a where
tagBddEval :: [Prp] -> Tagged a Bdd -> Bool
tagBddEval truths querybdd = evaluateFun (untag querybdd) (\n -> P n `elem` truths)

instance TagBdd Dubbel

. . .

Project Practicalities

Topic Choice

See https://malv.in/2018/funcproglog/topics.html for a list of topics.

You can also come up with your own.

Please send us an email by Sunday evening what you would like to work on.

Next Friday, you will give a short presentation on what you are doing. You
may prepare a simple .lhs file, something to write on the board or up to
three slides for this.

https://malv.in/2018/funcproglog/topics.html

Report Grading Criteria
You will only get a pass/fail grade.

Additionally we will of course give feedback in text.

Your final report should:
I have a clear topic, and a concrete goal or research question
I be written in literate programming style and well-structured
I compile
I have zero warnings with ghc -Wall
I generate zero hints from hlint
I be between 5 and 25 pages (i.e. the length does not really matter)

	DEL
	Simple Explicit Model Checking
	Symbolic Model Checking for DEL
	Binary Decision Diagrams
	Examples and Results
	Howto use SMCDEL
	Transformers
	Non-S5
	Project Practicalities

