
Functional Programming for Logicians - Lecture 3
Folding, Functors, Monads

Malvin Gattinger

6 June 2018

module L3 where

(Slides partly copied from Jan van Eijck)

Outline

I Folding
I Hello World
I Category Theory in one slide
I Functors and Applicatives
I Monads Warm Fuzzy Things
I Input and Output — the IO Monad

Folding

Spot the pattern!

mySum :: [Integer] -> Integer
mySum [] = 0
mySum (x:xs) = x + mySum xs

myAnd :: [Bool] -> Bool
myAnd [] = True
myAnd (x:xs) = x && myAnd xs

myMap :: (a -> b) -> [a] -> [b]
myMap f [] = []
myMap f (x:xs) = f x : myMap f xs

foldl

mySum :: [Integer] -> Integer
mySum xs = foldl (+) 0 xs

myAnd :: [Bool] -> Bool
myAnd xs = foldl (&&) True xs

myMap :: (a -> b) -> [a] -> [b]
myMap f xs = foldl (\x -> (f x :)) [] xs

Folding left and right

λ> :t foldl
foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b
λ> :t foldr
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

Exercise: Which of foldl and foldr can work on infinite lists? Why?

See also: Haskell wiki: https://wiki.haskell.org/Foldr_Foldl_Foldl’

https://wiki.haskell.org/Foldr_Foldl_Foldl'

Hello World

Obligatory Meme

Hello World

IO (Input/Output) is interaction with the outside world. IO in Haskell is
different from IO in imperative or object-oriented languages, because the
functional paradigm isolates the purely functional kernel of the language from
the outside world. Hence Hello World is not the simplest possible program
to write in Haskell. But it is also not that difficult:

λ> putStrLn "Hello World"
Hello World

This outputs a string to the screen. A more elaborate version would first ask
for user input, which means that interaction with the outside world takes
place. Let’s see that in Haskell . . .

Hello World 2.0
helloWorld :: IO ()
helloWorld = do putStrLn "What is your name?"

x <- getLine
putStrLn ("Hello " ++ x ++ "!")

Such interaction is called a side effect. Pure functions do not have side
effects; they just compute values, and for this they do not use information
from the outside world. This purity is a very good thing, for it allows us to
reason about functional computation in a mathematical way.

Input-Output involves interaction with the outside world, hence side effects.
The Haskell method of dealing with side effects, and isolating them from the
pure functional kernel of the language is by putting them in a wrapper. Such
wrappers like IO are called Monads.

Theory first!

The concept of monads is borrowed from category theory. Monadic
programming can be understood without tracing this connection.

In the same way, IO in Haskell can be understood without understanding
monads. But as you are Master of Logic students, a bit of theory is
appropriate.

The Category of Types

Category Theory Basics
I Objects
I Arrows

I identity
I composition

I Functors:
I maps objects to objects and arrows to arrows
I maps the identity to the identity
I commutes with arrow composition

(Recommended talk: Category Theory for the Working Hacker by Philip Wadler
https://youtu.be/V10hzjgoklA)

https://youtu.be/V10hzjgoklA

The Category of Types

I Objects: Types a
I Arrows: Function Types a -> b

Functors

Functors: fmap

Just another type class, like Eq or Show.

λ> :i Functor
class Functor (f :: * -> *) where

fmap :: (a -> b) -> f a -> f b
{-# MINIMAL fmap #-}

As we learned in category theory, a functor should fulfill two conditions:

1. Functors must preserve identity morphisms:

fmap id == id

2. Functors preserve composition of morphisms:

fmap (f . g) == fmap f . fmap g

Recall: Maybe

Recall that Maybe is predefined like this:

data Maybe a = Nothing | Just a

Example usage:

myLookup :: Eq a => a -> [(a,b)] -> Maybe b
myLookup _ [] = Nothing
myLookup k ((k',v):xs) | k == k' = Just v

| otherwise = myLookup k xs

Example: instance Functor Maybe
data Maybe a = Nothing | Just a

Maybe is a functor:
I on objects: a is mapped to Maybe a
I on arrows: a -> b is mapped to Maybe a -> Maybe b

instance Functor Maybe where
fmap :: (a -> b) -> Maybe a -> Maybe b
fmap _ Nothing = Nothing
fmap f (Just a) = Just (f a)

Does it fulfill both conditions?
I fmap id = id
I fmap (f . g) == fmap f . fmap g

Example: instance Functor Maybe
data Maybe a = Nothing | Just a

Maybe is a functor:
I on objects: a is mapped to Maybe a
I on arrows: a -> b is mapped to Maybe a -> Maybe b

instance Functor Maybe where
fmap :: (a -> b) -> Maybe a -> Maybe b
fmap _ Nothing = Nothing
fmap f (Just a) = Just (f a)

Does it fulfill both conditions?
I fmap id = id
I fmap (f . g) == fmap f . fmap g

Functor is just a type class
Just like Eq, Ord, Show and Functor is a type class, which means that certain
functions are predefined for it. An important difference however is that
Functor is a type class which does not apply to concrete types ∗ but to an
abstract type ∗ → ∗. For example, instance Eq String where ... makes
the equality == available on Strings.

λ> :k Eq
Eq :: * -> Constraint

In contrast, instance Functor Maybe where ... does not give us
functions working on things of type Maybe because nothing is of type Maybe.
Things can be of Type Maybe Int, Maybe String, etc.

λ> :k Functor
Functor :: (* -> *) -> Constraint
See also: Kinds and some type-foo in LYHFGG

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#kinds-and-some-type-foo

Functor is just a type class
Just like Eq, Ord, Show and Functor is a type class, which means that certain
functions are predefined for it. An important difference however is that
Functor is a type class which does not apply to concrete types ∗ but to an
abstract type ∗ → ∗. For example, instance Eq String where ... makes
the equality == available on Strings.

λ> :k Eq
Eq :: * -> Constraint

In contrast, instance Functor Maybe where ... does not give us
functions working on things of type Maybe because nothing is of type Maybe.
Things can be of Type Maybe Int, Maybe String, etc.

λ> :k Functor
Functor :: (* -> *) -> Constraint

See also: Kinds and some type-foo in LYHFGG

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#kinds-and-some-type-foo

Functor is just a type class
Just like Eq, Ord, Show and Functor is a type class, which means that certain
functions are predefined for it. An important difference however is that
Functor is a type class which does not apply to concrete types ∗ but to an
abstract type ∗ → ∗. For example, instance Eq String where ... makes
the equality == available on Strings.

λ> :k Eq
Eq :: * -> Constraint

In contrast, instance Functor Maybe where ... does not give us
functions working on things of type Maybe because nothing is of type Maybe.
Things can be of Type Maybe Int, Maybe String, etc.

λ> :k Functor
Functor :: (* -> *) -> Constraint
See also: Kinds and some type-foo in LYHFGG

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#kinds-and-some-type-foo

A functor is a thing that can be mapped over, and the function to do so is
fmap.

λ> fmap succ (Just (3::Int))
Just 4
λ> fmap (map toUpper) (Just "hello")
Just "HELLO"
λ> fmap succ [1,5,100::Int]
[2,6,101]

The last example shows that [] is also a functor

Function Application inside a Functor

Suppose we are processing inside a functor, and we need to apply a pure
function, say toUpper from Data.Char. Then this is how to do it:

λ> fmap (map toUpper) (Just "jan")
Just "JAN"

The function fmap turns the string operation map toUpper into a monadic
function.

There is also an alias for infix notation:

λ> map toUpper <$> Just "malvin"
Just "MALVIN"

This shows that fmap can be used as the monadic version of $.

Applicatives

Applicative Functors

An Applicative is a functor with extra structure, but not yet a Monad. (See
Applicative Functors.)

λ> :i Applicative
class Functor f => Applicative (f :: * -> *) where

pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

A functor with application provides a way to:
I embed pure expressions (with pure :: a -> f a)
I sequence computations and combine their results (with (<*>) :: f (a

-> b) -> f a -> f b).

https://wiki.haskell.org/Applicative_functor

Applicative Laws
pure id <*> == id

pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

pure f <*> pure x = pure (f x)

u <*> pure y = pure ($ y) <*> u

The second law is the compostion law. It says that if <*> is used for
composition, then the composition is associative.

In the fourth law, note that ($ y) is the function that supplies y as argument
to another function.

Relation between fmap and <*>:

fmap f x = pure f <*> x

Example: instance Applicative Maybe

instance Applicative Maybe where
pure :: a -> Maybe a
pure = Just
(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b
(<*>) Nothing _ = Nothing
(<*>) (Just f) Nothing = Nothing
(<*>) (Just f) (Just x) = Just (f x)

λ> Just succ <*> Just 3
Just 4

Example: instance Functor/Applicative []

Another Functor you already know is [] for lists!
I Objects: a is mapped to [a]
I Arrows: a -> b is mapped to [a] -> [b]

⇒ Exercises: How are the Functor and Applicative functions defined for lists?
I fmap
I pure
I <*>

Try to write down the definitions yourself and check that fmap f xs = pure
f <*> xs holds.

Monads

Monads: >>=

Our biggest mistake: Using the scary term “monad” rather than
“warm fuzzy thing”. — Simon Peyton-Jones

class Applicative m => Monad (m :: * -> *) where
(>>=) :: m a -> (a -> m b) -> m b
{-# MINIMAL (>>=) #-}

The function (>>=) is called bind.

Example: instance Monad Maybe
Maybe is a Monad, and in this particular case, the bind function is defined as:

instance Monad Maybe where
(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
(>>=) (Just x) f = f x
(>>=) Nothing _ = Nothing

Examples of the use of (>>=):

λ> Just (3::Int) >>= \x -> Just (succ x)
Just 4
λ> Just (3::Int) >>= \x -> lookup x [(3,5),(7,9::Int)]
Just 5
λ> Just (1::Int) >>= \x -> lookup x [(3,5),(7,9::Int)]
Nothing

Example: instance Monad Maybe
Maybe is a Monad, and in this particular case, the bind function is defined as:

instance Monad Maybe where
(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
(>>=) (Just x) f = f x
(>>=) Nothing _ = Nothing

Examples of the use of (>>=):

λ> Just (3::Int) >>= \x -> Just (succ x)
Just 4
λ> Just (3::Int) >>= \x -> lookup x [(3,5),(7,9::Int)]
Just 5
λ> Just (1::Int) >>= \x -> lookup x [(3,5),(7,9::Int)]
Nothing

Example: Using Maybe for Exceptions
table :: [(Int,Int)]
table = map (\x -> (x,x^(3::Int))) [1..100]

We want to look up two numbers and add them.

process :: Int -> Int -> Maybe Int
process m n = lookup m table >>= \v -> lookup n table

>>= \w -> return (v+w)

λ> lookup 3 table
Just 27
λ> lookup 200 table
Nothing
λ> process 3 5
Just 152

What does process 0 3 and process 3 200 give? Why?

Example: instance Monad []
Now let’s look at the list container as a monad. List types are functors, and
their mapping function fmap is map. List types are also monads. Putting a
single thing in a list container is done by the function \x -> [x], which can
be abbreviated as (:[]). Hence the return for lists is (:[]).

λ> return 3 :: [Int]
[3]

Let’s make a few variations on x -> [x] and see what we get:

λ> [1,2,3] >>= \x -> [x,x]
[1,1,2,2,3,3]
λ> [1,2,3] >>= \x -> [x,x,x]
[1,1,1,2,2,2,3,3,3]
λ> [1,2,3] >>= \x -> [x,x,x,x]
[1,1,1,1,2,2,2,2,3,3,3,3]

Keep Calm

Again, saying that something is a monad just means that it is of kind * -> *
and in the type class Monad. Which means that >>= works on it.

The internet has so many Monad tutorials that you could probably spend the
rest of this month reading them. Here are three:

I LYHGG: A Fistful of Monads
http://learnyouahaskell.com/a-fistful-of-monads

I Wiki books: Understanding Monads
https://en.wikibooks.org/wiki/Haskell/Understanding_monads

I Stephen Diehl: Monads Made Difficult
http://www.stephendiehl.com/posts/monads.html

http://learnyouahaskell.com/a-fistful-of-monads
https://en.wikibooks.org/wiki/Haskell/Understanding_monads
http://www.stephendiehl.com/posts/monads.html

The Monad Laws
I return a >>= k = k a.
I m >>= return = m.
I m >>= \x -> k x >>= h = (m >>= k) >>= h.

The first law says that Just 5 >>= Just and Just 5 are equivalent.

The second law says that getLine >>= return is equivalent to getLine.

The third law expresses the associativity of >>=:

getLine >>= \n -> putStrLn n >>= return

is equivalent to: getLine >>= putStrLn >>= return

which by the second Monad Law is in turn equivalent to

getLine >>= putStrLn

>> then

The function (>>) can be defined in terms of (>>=) as follows:

(>>) :: Monad m => m a -> m b -> m b
m >> k = m >>= (\ _ -> k)

This function (also called then is a more primitive version of (>>=) (called
bind): it discards the value passed to it by its first argument.

join

λ> :t join
join :: Monad m => m (m a) -> m a

This is predefined for every Monad like this:

join xss = xss >>= id

Thinking of m as a box, we see that join flattens a box in a box to a single
box. The implementation for the case of Maybe is easy:

join :: Maybe (Maybe a) -> Maybe a
join (Just x) = x
join _ = Nothing

Examples:

λ> join (Just (Just 3))
Just 3
λ> join (Just Nothing)
Nothing
λ> join Nothing
Nothing
λ> join [[1],[2,3],[4::Int]]
[1,2,3,4]

The last result shows that join for lists is in fact the concat function.

Overview: Functor, Monad, Applicative

Monads ⊆ Applicatives ⊆ Functors

Functor:
I fmap :: (a -> b) -> f a -> f b

Applicative:
I pure :: a -> f a
I (<*>) :: f (a -> b) -> f a -> f b

Monad:
I (>>=) :: m a -> (a -> m b) -> m b (called bind)
I return :: a -> m a

IO

Hello World, again
You can think of IO a as actions which give a result of type a.

helloWorld :: IO ()
helloWorld = do putStrLn "What is your name?"

x <- getLine
putStrLn ("Hello " ++ x ++ "!")

This is in fact the same as:

hello :: IO ()
hello = putStrLn "What is your name?"

>> getLine
>>= \name -> putStrLn ("Hello " ++ name)

⇒ Questions: What are the types of getLine and putStrLn? Why do we
first use >> and then >>=?

IO in a single line in ghci

Note that what we did with Maybe also works with the IO monad:

λ> import Data.Char
λ> fmap (map toUpper) getLine
jan
"JAN"

(The line jan is entered by the user!)

Again, also with the infix <$> operator:

λ> map toUpper <$> getLine
malvin
"MALVIN"

Do Notation

First consider monad objects connected by then operators. Example:

λ> putStrLn "x" >> putStrLn "y" >> putStrLn 'z'
"x"
"y"
'z'
λ> do putStrLn "x" ; putStrLn "y" ; putStrLn 'z'
"x"
"y"
'z'

Think of the monad objects as a list of actions, and of the do notation of a
way of presenting this list like a sequential program.

In a similar way we can translate bind to do notation:

λ> getLine >>= \ x -> putStrLn ("hello " ++ x)
jan
"hello jan"
λ> do x <- getLine; putStrLn ("hello " ++ x)
jan
"hello jan"

Do notation with <-

We can string more than two actions together:

greetings :: IO ()
greetings = do putStrLn "First name?"

x <- getLine
putStrLn "Second name?"
y <- getLine
putStrLn ("Hello " ++ x ++ " " ++y)

Note that the semicolons are superfluous now.

You can think of x <- y as doing the action y to get the value x .

The function greetigns is equivalent to (or syntactic sugar for):

greetz :: IO ()
greetz = putStrLn "First name?" >>

getLine >>= \ x ->
putStrLn "Second name?" >>
getLine >>= \ y ->
putStrLn ("Hello " ++ x ++ " " ++ y)

See also: Wiki books on do notation

https://en.wikibooks.org/wiki/Haskell/do_notation

No exercise session today, but . . .
I you should practice!
I see website for research/project topics!
I further reading: Why IO Input Types Are Bad

See you tomorrow at 10:00.

https://malv.in/notes/2016-11-16-WhyNoIOinput.pdf

	Folding
	Hello World
	The Category of Types
	Functors
	Applicatives
	Monads
	IO

