
Functional Programming for Logicians - Lecture 2
Type Classes, QuickCheck, Modal Logic

Malvin Gattinger

5 June 2018

module L2 where

import E1S
import Data.List
import Test.QuickCheck

Overview

I Recap: What we did yesterday

I isValid for Propositional Logic

I Polymorphism

I Type Classes

I QuickCheck

I Example: Modal Logic

I hlint and ghc -Wall

What we did yesterday

I Functions: f . g and $

I Lists: map, comprehension, ++, !!

I Recursion

I Lambdas: (\x -> x + x)

I Guards, Pattern Matching

I Propositional Logic in Haskell

I Exercises:
I list functions
I prime numbers
I propositional Logic

Recap: Propositional Logic

data Form = P Integer | Neg Form | Conj Form Form
deriving (Eq,Ord,Show)

type Assignment = [Integer]

satisfies :: Assignment -> Form -> Bool
satisfies v (P k) = k `elem` v
satisfies v (Neg f) = not (satisfies v f)
satisfies v (Conj f g) = satisfies v f && satisfies v g

varsIn :: Form -> [Integer]
varsIn (P k) = [k]
varsIn (Neg f) = varsIn f
varsIn (Conj f g) = nub (varsIn f ++ varsIn g)

allAssignmentsFor :: [Integer] -> [Assignment]
allAssignmentsFor [] = [[]]
allAssignmentsFor (p:ps) =

[p:rest | rest <- allAssignmentsFor ps]
++ allAssignmentsFor ps

isValid :: Form -> Bool
isValid f =

and [v `satisfies` f | v <- allAssignmentsFor (varsIn f)]

Examples:

λ> isValid $ P 1
False
λ> isValid $ Neg (Conj (P 1) (Neg (P 1)))
True

type, data, newtype

I type is for abbreviations:

type Person = (String,Integer)

I data is for new stuff:

data Form = P Int | Neg Form | Conj Form Form

I newtype is for single-case new stuff that actually abbreviates:

newtype Name = Name String

curry and uncurry

λ> :t curry
curry :: ((a, b) -> c) -> a -> b -> c
λ> :t uncurry
uncurry :: (a -> b -> c) -> (a, b) -> c
λ> uncurry (+) (7,5)
12

⇒ Board exercise: Define curry and uncurry!

Polymorphism

A fancy name for something you already know: Functions can be
defined for any type, using type variables like a and b here:

λ> :t fst
fst :: (a, b) -> a
λ> :t map
map :: (a -> b) -> [a] -> [b]

Note that partial application of map already determines the type:

λ> :t map (++ " omg!")
map (++ " omg!") :: [String] -> [String]

Whenever you write map it is fixed at compile-time what a is!

Polymorphism

A fancy name for something you already know: Functions can be
defined for any type, using type variables like a and b here:

λ> :t fst
fst :: (a, b) -> a
λ> :t map
map :: (a -> b) -> [a] -> [b]

Note that partial application of map already determines the type:

λ> :t map (++ " omg!")
map (++ " omg!") :: [String] -> [String]

Whenever you write map it is fixed at compile-time what a is!

Type classes

Some functions are polymorphic, but not totally. For example, we
can only lookup something if we know how to check for equality:

λ> :t lookup
lookup :: Eq a => a -> [(a, b)] -> Maybe b

Eq is a type class defined like this:

class Eq a where
(==) :: a -> a -> Bool

Suppose we have:

data Animal = Cat | Horse | Bird

Then Cat == Horse is not defined until we make a new instance of
Eq to teach Haskell when two animals can are equal . . .

Type classes

Some functions are polymorphic, but not totally. For example, we
can only lookup something if we know how to check for equality:

λ> :t lookup
lookup :: Eq a => a -> [(a, b)] -> Maybe b

Eq is a type class defined like this:

class Eq a where
(==) :: a -> a -> Bool

Suppose we have:

data Animal = Cat | Horse | Bird

Then Cat == Horse is not defined until we make a new instance of
Eq to teach Haskell when two animals can are equal . . .

Type classes

Some functions are polymorphic, but not totally. For example, we
can only lookup something if we know how to check for equality:

λ> :t lookup
lookup :: Eq a => a -> [(a, b)] -> Maybe b

Eq is a type class defined like this:

class Eq a where
(==) :: a -> a -> Bool

Suppose we have:

data Animal = Cat | Horse | Bird

Then Cat == Horse is not defined until we make a new instance of
Eq to teach Haskell when two animals can are equal . . .

When are Animals equal?

class Eq a where
(==) :: a -> a -> Bool

instance Eq Animal where
(==) Cat Cat = True
(==) Horse Horse = True
(==) Bird Bird = True
(==) _ _ = False

The Ord class
λ> :i Ord
class Eq a => Ord a where

compare :: a -> a -> Ordering
(<) :: a -> a -> Bool
(<=) :: a -> a -> Bool
(>) :: a -> a -> Bool
(>=) :: a -> a -> Bool
max :: a -> a -> a
min :: a -> a -> a
{-# MINIMAL compare | (<=) #-}

instance Ord Animal where
(<=) _ Horse = True
(<=) Cat Cat = True
(<=) Bird _ = True
(<=) _ _ = False

Note that it is our job to make <= reflexive and transitive!

The Show class

class Show a where
show :: a -> String

instance Show Animal where
show Cat = "Cat"
show Horse = "Horse"
show Bird = "Bird"

Convention: show x should return valid Haskell code.

It is not meant for pretty printing!

prettyPrint :: Animal -> String

prettyPrint Cat = " "

prettyPrint Horse = " "

prettyPrint Bird = " "

The Show class

class Show a where
show :: a -> String

instance Show Animal where
show Cat = "Cat"
show Horse = "Horse"
show Bird = "Bird"

Convention: show x should return valid Haskell code.

It is not meant for pretty printing!

prettyPrint :: Animal -> String

prettyPrint Cat = " "

prettyPrint Horse = " "

prettyPrint Bird = " "

Deriving Instances

All of this was a bit tedious and trivial, so let GHC do it:

data Animal = Cat | Horse | Bird deriving (Eq,Ord,Show)

A non-trivial instance example: sets
λ> [1,1,3] == [1,3,3]
False
λ> [6,1] == [1,6]
False

newtype Set a = Set [a]

instance (Ord a) => Eq (Set a) where
(==) (Set xs) (Set ys) = sort (nub xs) == sort (nub ys)

instance (Ord a, Show a) => Show (Set a) where
show (Set xs) = "Set " ++ show (sort (nub xs))

λ> Set [1,1,3] == Set [1,3,3]
True
λ> Set [1,1,3]
Set [1,3]
λ> Set [6,1] == Set [1,6]
True

A non-trivial instance example: sets
λ> [1,1,3] == [1,3,3]
False
λ> [6,1] == [1,6]
False

newtype Set a = Set [a]

instance (Ord a) => Eq (Set a) where
(==) (Set xs) (Set ys) = sort (nub xs) == sort (nub ys)

instance (Ord a, Show a) => Show (Set a) where
show (Set xs) = "Set " ++ show (sort (nub xs))

λ> Set [1,1,3] == Set [1,3,3]
True
λ> Set [1,1,3]
Set [1,3]
λ> Set [6,1] == Set [1,6]
True

Type Class overview

I Eq — stuff where == works

I Show — stuff that can be shown

I Ord — stuff that can be compared and sorted

Kinds

Expressions like Int, Maybe, Show do not have a type, but a kind:

λ> :k Int
Int :: *
λ> :k Maybe
Maybe :: * -> *
λ> :k Show
Show :: * -> Constraint
λ> :k Set
Set :: * -> *
λ> :k Either
Either :: * -> * -> *

Think of kinds as “meta-types”: The kind of something tells you
whether something is a type or what it does to types.

A Maybe Either Example

lookupTwo :: Eq a => a -> [(a,b)]
-> [(a,c)]
-> Maybe (Either b c)

lookupTwo x one two =
case (lookup x one, lookup x two) of

(Just y , _) -> Just (Left y)
(Nothing, Just z) -> Just (Right z)
_ -> Nothing

QuickCheck

Properties

Let a be some type.

Then a -> Bool is the type of a properties.

Properties can be used for testing.

Example: Quicksort

Quicksort is a very efficient sorting algorithm.

Here is an implementation in Haskell:

quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (x:xs) = quicksort [a | a <- xs, a <= x]

++ [x]
++ quicksort [a | a <- xs, a > x]

The quicksort function should turn any finite list of items into an
ordered list of items.

(This is not the true real Quicksort(TM) . . .)

We can check if a list is ordered like this:

isOrdered :: Ord a => [a] -> Bool
isOrdered [] = True
isOrdered (x:xs) = all (>= x) xs && isOrdered xs

The QuickCheck library allows us to do the following:

quickCheck (\xs -> isOrdered (quicksort xs::[Int]))

To see what it does, use verboseCheck instead.

Here’s another property we want:

sameLength :: [Int] -> [Int] -> Bool
sameLength xs ys = length xs == length ys

quickCheck (\xs -> sameLength xs (quicksort xs))

Does it hold?

→ See also:

I Juan Pedro Villa: A QuickCheck Tutorial: Generators
I Hackage documentation: Test.QuickCheck

https://www.stackbuilders.com/news/a-quickcheck-tutorial-generators
https://hackage.haskell.org/package/QuickCheck/docs/Test-QuickCheck.html

Here’s another property we want:

sameLength :: [Int] -> [Int] -> Bool
sameLength xs ys = length xs == length ys

quickCheck (\xs -> sameLength xs (quicksort xs))

Does it hold?

→ See also:

I Juan Pedro Villa: A QuickCheck Tutorial: Generators
I Hackage documentation: Test.QuickCheck

https://www.stackbuilders.com/news/a-quickcheck-tutorial-generators
https://hackage.haskell.org/package/QuickCheck/docs/Test-QuickCheck.html

QuickChecking our Porpositional Logic

Can we do this?

quickCheck (\f -> isValid f == isValid (Neg (Neg f)))

Hint: Not yet.

Teaching QuickCheck some Logic
myAtoms :: [Integer]
myAtoms = [1..5]

instance Arbitrary Form where
arbitrary = sized randomForm where

randomForm :: Int -> Gen Form
randomForm 0 = P <$> elements myAtoms
randomForm n = oneof

[P <$> elements myAtoms
, Neg <$> randomForm (n `div` 2)
, Conj <$> randomForm (n `div` 2)

<*> randomForm (n `div` 2)]

Now we can do:

verboseCheck (\f -> isValid f == isValid (Neg (Neg f)))

Which other properties do we expect to hold?

QuickCheck as a Research Tool

0. Have a conjecture about X.

1. Implement X in Haskell.

2. Implement an Arbitrary instance for X.

3. Formulate conjecture as a property.

4. quickCheck

?. Profit

QuickCheck as a Research Tool

0. Have a conjecture about X.

1. Implement X in Haskell.

2. Implement an Arbitrary instance for X.

3. Formulate conjecture as a property.

4. quickCheck

?. Profit

Modal Logic

Kripke models and modal formulas

type Proposition = Int

type World = Integer
type Universe = [World]
type Valuation = World -> [Proposition]
type Relation = [(World,World)]
data KripkeModel = KrM Universe Valuation Relation

data ModForm = Prp Proposition
| Not ModForm
| Con ModForm ModForm
| Box ModForm

Modal Logic Semantics

makesTrue :: (KripkeModel,World) -> ModForm -> Bool
makesTrue (KrM _ v _, w) (Prp k) = k `elem` v w
makesTrue (m,w) (Not f) = not (makesTrue (m,w) f)
makesTrue (m,w) (Con f g) =

makesTrue (m,w) f && makesTrue (m,w) g
makesTrue (KrM u v r, w) (Box f) =

all (\w' -> makesTrue (KrM u v r,w') f) ws where
ws = [y | y <- u, (w,y) `elem` r]

(Side remark: If you are also annoyed that we have to repeat the
definitions for propositional logic here, check out “final tagless”
interpreters, see http://okmij.org/ftp/tagless-final/)

http://okmij.org/ftp/tagless-final/

Modal Logic: Example

myModel :: KripkeModel
myModel = KrM [0,1,2] myVal myRel where

myVal 0 = [1,2]
myVal 1 = [1]
myVal 2 = [1,3]
myVal _ = undefined
myRel = [(0,0),(0,1),(0,2)]

λ> (myModel,0) `makesTrue` Box (Prp 1)
True
λ> (myModel,0) `makesTrue` Box (Prp 2)
False

See you again at 13:00 in F3.20.

	QuickCheck
	Modal Logic

