
Exercise File 3

module E3 where

import Data.List

Exercise 3.1

Suppose we want to have unordered pairs, for which (4, 5) == (5, 4). For
example, think about a round of a game with two players. This is an exercise to
define instances of the Show and Eq type classes.

newtype UnOrdPair a = UOP (a,a)

Implement a Show and an Eq instance such that we get:

> show (UOP (1,4))
UOP (1,4)
> show (UOP (4,1))
UOP (1,4)
> UOP (1,4) == UOP (4,1)
True

instance (Show a, Ord a) => Show (UnOrdPair a) where
show (UOP (x,y)) = undefined

Hint: start by distinguishing whether we have x < y or not.

instance Ord a => Eq (UnOrdPair a) where
(==) (UOP (x1,y1)) (UOP (x2,y2)) = undefined

Hint: Use || and describe the two cases in which the pairs should be equal.

Exercise 3.2

Consider Hello World 2.0 from the lectures:

dialogue :: IO ()
dialogue = do putStrLn "Hello! Who are you?"

name <- getLine
putStrLn $ "Nice to meet you, " ++ name ++ "!"

Extend this implementation such that it behaves as follows. Hint: You might
want a line like let age = read ageString :: Int.

E3> dialogue
Hello! Who are you?
Bob -- user input
Nice to meet you, Bob!
How old are you?
94 -- user input
Ah, that is 6 years younger than me!

1

Exercise 3.3

Recall the Modal Logic implementation:

type World = Integer
type Universe = [World]
type Proposition = Int
type Valuation = World -> [Proposition]
type Relation = [(World,World)]
data KripkeModel = KrM Universe Valuation Relation

data ModForm = Prp Proposition
| Not ModForm
| Con ModForm ModForm
| Box ModForm
deriving (Eq,Ord,Show)

makesTrue :: (KripkeModel,World) -> ModForm -> Bool
makesTrue (KrM _ v _, w) (Prp k) = k `elem` v w
makesTrue (m,w) (Not f) = not (makesTrue (m,w) f)
makesTrue (m,w) (Con f g) =

makesTrue (m,w) f && makesTrue (m,w) g
makesTrue (KrM u v r, w) (Box f) =

all (\w' -> makesTrue (KrM u v r,w') f) ws where
ws = [y | y <- u, (w,y) `elem` r]

In this exercise you should extend this implementation in various ways.

Add a function to check for truth in a whole model:

trueEverywhere :: KripkeModel -> ModForm -> Bool
trueEverywhere = undefined

Add diamonds, the dual of boxes. You can either add a new constructor Dia to
the line data ModForm = ... above or define diamonds as an abbreviation in
terms of Not and Box.

dia :: ModForm -> ModForm
dia = undefined

Think about when we call two Kripke models equal? For example, the universe
should be the same when viewed as a list, but the order of worlds should not
matter. Uncomment this and implement an instance Eq KripkeModel:

-- instance Eq KripkeModel where
-- (==) = undefined

You should know what a bisimulation is. If not, see the relevant part of the BRV
book. Write a function that checks a given bisimulation:

type Bisimulation = [(World,World)]

checkBisim :: KripkeModel -> KripkeModel -> Bisimulation -> Bool
checkBisim = undefined

2

Kripke models where all relations are equivalence relations are often used in
epistemic logic to model a strong/hard notion of knowledge. Because of the
axioms that characterize axiomatize the logic of such models, they are also called
S5 models.

Representing equivalence relations with Relation = [(World,World)] is a big
waste of space. For example, the equivalence relation

[(0,0),(0,1),(1,0),(1,1),(2,2)]

can also be represented much shorter as a list of lists: [[0,1],[2]].

Implement semantics in this way:

type EquiRel = [[World]]

data KripkeModelS5 = KrMS5 Universe Valuation EquiRel

makesTrueS5 :: KripkeModelS5 -> ModForm -> Bool
makesTrueS5 = undefined

It is annoying that we have to rename makesTrue for S5 models. We can in fact
also use the same name. If you are curious how, look up how to define a new
type class!

Some more ideas what you could do:

• Write a function that takes a formula and outputs nice LaTeX code.

• Visualize Kripke models by writing a function that takes a model and
returns code for the dot program from https://www.graphviz.org/. (You
can also use the graphviz library from Hackage, but note that it is not
included in lts-11.11, so you might have to use and older snapshot and
older version of GHC.)

• Use QuickCheck to investigate Modal Logic: First, implement instance
Arbitrary KripkeModel and instance Arbitrary ModForm. Then
check some modal formulas. Note that random testing will never allow
you to show validity, but it can refute it.

Exercise 3.4

Let’s implement the famous Hilbert Hotel with laziness in Haskell. If you don’t
know it yet, watch https://youtu.be/Uj3_KqkI9Zo.

A room can be occupied by a guest (Just "Jana") or empty (Nothing). A hotel
is a list of rooms:

type Guest = String
type Room = Maybe Guest
newtype Hotel = Hot [Room]

Initially, the Hotel is full. Admittedly, the guests have boring names:

initialFullHotel :: Hotel
initialFullHotel = Hot [Just $ "Guest" ++ show n | n <- [(1::Integer)..]]

3

https://www.graphviz.org/
https://youtu.be/Uj3_KqkI9Zo

To be sure that we never try to print the whole infinite hotel, here is a Show
instance which only shows the first 10 rooms:

instance Show Hotel where
show (Hot rooms) = "Hot [" ++ substring ++ " ...]" where

substring = intercalate ", " $ map show (take 10 rooms)

Try this out by typing initialFullHotel in ghci now.

Accomodating a single person is easy, right?

accommodateSingle :: Hotel -> Guest -> Hotel
accommodateSingle (Hot h) newGuest = undefined

If you replaced undefined above correctly, then you should get this:

E3> Hot [Just "Bob", Just "Guest1", Just "Guest2",
Just "Guest3", Just "Guest4", Just "Guest5",
Just "Guest6", Just "Guest7", Just "Guest8",
Just "Guest9" ...]

Also accomodating a finite group should be easy:

accommodateFiniteGroup :: Hotel -> [Guest] -> Hotel
accommodateFiniteGroup = undefined

But what if group is infinite?

accommodateGroup :: Hotel -> [Guest] -> Hotel
accommodateGroup = undefined

And what if we have a finite number of groups of infinite length?

accommodateFinitelyManyGroups :: Hotel -> [[Guest]] -> Hotel
accommodateFinitelyManyGroups = undefined -- Hint: use a fold!

Finally, what if we have infinitely many groups of infinite length?

accommodateArbitraryGroups :: Hotel -> [[Guest]] -> Hotel
accommodateArbitraryGroups = undefined

You might want to look up and use Szudzik’s Elegant Pairing Function. See here
for a presentation and here for an example in JavaScript.

4

http://szudzik.com/ElegantPairing.pdf
http://szudzik.com/ElegantPairing.pdf
https://gist.github.com/antimatter15/8cb2538f4bd195e0b439560ec8c8e5b9

	Exercise File 3
	Exercise 3.1
	Exercise 3.2
	Exercise 3.3
	Exercise 3.4

