Exercise File 3

module E3 where

import Data.List

Exercise 3.1

Suppose we want to have unordered pairs, for which (4, 5) == (5, 4). For example, think about a round of a game with two players. This is an exercise to define instances of the Show and Eq type classes.

newtype UnOrdPair a = UOP (a,a)

Implement a Show and an Eq instance such that we get:

> show (UOP (1,4))
UOP (1,4)
> show (UOP (4,1))
UOP (1,4)
> UOP (1,4) == UOP (4,1)
True

instance (Show a, Ord a) => Show (UnOrdPair a) where
 show (UOP (x,y)) = undefined

Hint: start by distinguishing whether we have x < y or not.

instance Ord a => Eq (UnOrdPair a) where
 (==) (UOP (x1,y1)) (UOP (x2,y2)) = undefined

Hint: Use || and describe the two cases in which the pairs should be equal.

Exercise 3.2

Consider Hello World 2.0 from the lectures:

dialogue :: IO ()
dialogue = do putStrLn "Hello! Who are you?"
 name <- getline
 putStrLn $ "Nice to meet you, " ++ name ++ "!

Extend this implementation such that it behaves as follows. Hint: You might want a line like let age = read ageString :: Int.

E3> dialogue
Hello! Who are you?
Bob -- user input
Nice to meet you, Bob!
How old are you?
94 -- user input
Ah, that is 6 years younger than me!
Exercise 3.3

Recall the Modal Logic implementation:

```haskell
type World = Integer
type Universe = [World]
type Proposition = Int
type Valuation = World -> [Proposition]
type Relation = [(World,World)]
data KripkeModel = KrM Universe Valuation Relation

data ModForm = Prp Proposition |
                 Not ModForm |
                 Con ModForm ModForm |
                 Box ModForm
                    deriving (Eq,Ord,Show)

makesTrue :: (KripkeModel,World) -> ModForm -> Bool
makesTrue (KrM _ v _, w) (Prp k) = k `elem` v w
makesTrue (m,w) (Not f) = not (makesTrue (m,w) f)
makesTrue (m,w) (Con f g) =
    makesTrue (m,w) f && makesTrue (m,w) g
makesTrue (KrM u v r, w) (Box f) =
    all (w' -> makesTrue (KrM u v r,w') f) ws where
    ws = [ y | y <- u, (w,y) `elem` r ]
```

In this exercise you should extend this implementation in various ways.

Add a function to check for truth in a whole model:

```haskell
trueEverywhere :: KripkeModel -> ModForm -> Bool
trueEverywhere = undefined
```

Add diamonds, the dual of boxes. You can either add a new constructor Dia to the line data ModForm = ... above or define diamonds as an abbreviation in terms of Not and Box.

```haskell
dia :: ModForm -> ModForm
dia = undefined
```

Think about when we call two Kripke models equal? For example, the universe should be the same when viewed as a list, but the order of worlds should not matter. Uncomment this and implement an instance Eq KripkeModel:

```haskell
-- instance Eq KripkeModel where
-- (==) = undefined
```

You should know what a bisimulation is. If not, see the relevant part of the BRV book. Write a function that checks a given bisimulation:

```haskell
type Bisimulation = [(World,World)]
checkBisim :: KripkeModel -> KripkeModel -> Bisimulation -> Bool
checkBisim = undefined
```
Kripke models where all relations are equivalence relations are often used in epistemic logic to model a strong/hard notion of knowledge. Because of the axioms that characterize axiomatize the logic of such models, they are also called S5 models.

Representing equivalence relations with $\text{Relation} = \{(\text{World},\text{World})\}$ is a big waste of space. For example, the equivalence relation $\{(0,0),(0,1),(1,0),(1,1),(2,2)\}$ can also be represented much shorter as a list of lists: $[[0,1],[2]]$.

Implement semantics in this way:

```haskell
type EquiRel = [[World]]
data KripkeModelS5 = KrMS5 Universe Valuation EquiRel
makesTrueS5 :: KripkeModelS5 -> ModForm -> Bool
makesTrueS5 = undefined
```

It is annoying that we have to rename `makesTrue` for S5 models. We can in fact also use the same name. If you are curious how, look up how to define a new type class!

Some more ideas what you could do:

- Write a function that takes a formula and outputs nice LaTeX code.
- Visualize Kripke models by writing a function that takes a model and returns code for the dot program from https://www.graphviz.org/. (You can also use the graphviz library from Hackage, but note that it is not included in lts-11.11, so you might have to use an older snapshot and older version of GHC.)
- Use QuickCheck to investigate Modal Logic: First, implement `instance Arbitrary KripkeModel` and `instance Arbitrary ModForm`. Then check some modal formulas. Note that random testing will never allow you to show validity, but it can refute it.

Exercise 3.4

Let’s implement the famous Hilbert Hotel with laziness in Haskell. If you don’t know it yet, watch https://youtu.be/Uj3_KqkI9Zo.

A room can be occupied by a guest (Just "Jana") or empty (Nothing). A hotel is a list of rooms:

```haskell
type Guest = String
type Room = Maybe Guest
newtype Hotel = Hot [Room]
```

Initially, the Hotel is full. Admittedly, the guests have boring names:

```haskell
initialFullHotel :: Hotel
initialFullHotel = Hot [ Just $ "Guest" ++ show n | n <- [(1::Integer)..] ]
```
To be sure that we never try to print the whole infinite hotel, here is a `Show` instance which only shows the first 10 rooms:

```haskell
instance Show Hotel where
  show (Hot rooms) = "Hot [" ++ substring ++ " ... "]" where
    substring = intercalate ", " $ map show (take 10 rooms)
```

Try this out by typing `initialFullHotel` in ghci now.

Accomodating a single person is easy, right?

```haskell
accommodateSingle :: Hotel -> Guest -> Hotel
accommodateSingle (Hot h) newGuest = undefined
```

If you replaced `undefined` above correctly, then you should get this:

```
E3> Hot [Just "Bob", Just "Guest1", Just "Guest2", Just "Guest3", Just "Guest4", Just "Guest5", Just "Guest6", Just "Guest7", Just "Guest8", Just "Guest9" ... ]
```

Also accomodating a finite group should be easy:

```haskell
accommodateFiniteGroup :: Hotel -> [Guest] -> Hotel
accommodateFiniteGroup = undefined
```

But what if group is infinite?

```haskell
accommodateGroup :: Hotel -> [Guest] -> Hotel
accommodateGroup = undefined
```

And what if we have a finite number of groups of infinite length?

```haskell
accommodateFinitelyManyGroups :: Hotel -> [[Guest]] -> Hotel
accommodateFinitelyManyGroups = undefined -- Hint: use a fold!
```

Finally, what if we have infinitely many groups of infinite length?

```haskell
accommodateArbitraryGroups :: Hotel -> [[Guest]] -> Hotel
accommodateArbitraryGroups = undefined
```

You might want to look up and use Szudzik’s Elegant Pairing Function. See here for a presentation and here for an example in JavaScript.